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ABSTRACT

In this paper, we investigate a new method for phase recovery
when prior information on the missing phases is available. In
particular, we propose to take into account this information in
a generic fashion by means of a multivariate Von Mises dis-
tribution. Building on a Bayesian formulation (a Maximum
A Posteriori estimation), we show that the problem can be
expressed using a Mahalanobis distance and be solved by a
lifting optimization procedure.

Index Terms— Phase retrieval, multivariate Von Mises
distribution, Mahalanobis distance, lifting.

1. INTRODUCTION

Since more than twenty years, phase retrieval has been a con-
stantly filled topic. This is because the problem interests nu-
merous application domains, from crystallography [1] to opti-
cal imaging [2]. Formally, it can be written as follows: given
y ∈ RM , recover x ∈ CK such as

y = |Ax|, (1)

where A is a M × K known complex-measurement matrix.
Several answers to this non-convex optimization problem
have been proposed, that we can roughly divide into three
families: i) alternating-projection algorithms, where we can
find the works of Gerchberg & Saxton [3], Fienup [4] or Grif-
fin & Lim [5], which alternate projections on the span of the
measurement matrix and on the object domain, ii) algorithms
based on convex relaxations, such as the recent PhaseLift [6]
and PhaseCut [7], which replace the phase recovery problem
by relaxed problems that can be efficiently solved by stan-
dard optimization procedures, and iii) Bayesian approaches,
which express the phase recovery problem as the solution of
a Bayesian inference problem and apply statistical tools to
solve it, such as variational approximations [8, 9].

In the above procedures, the phases are completely miss-
ing from the observations: only intensities or amplitudes are
∗This work has been supported by the DGA/MRIS.

acquired. In this paper, we are interested in phase retrieval
problems where phases are observed but marred by noise. At
the interface between the last two above families, we propose
a Bayesian formulation of the problem and resort to a lift-
ing optimization procedure to solve it. A priori knowledge
over observed phases through various probabilistic laws have
been exploited in previous works [10,11]. Compared to them,
our approach presents two appealing novelties: i) it is generic
in the sense that it can handle multivariate phase priors and
thus arbitrary dependencies; ii) the proposed Bayesian opti-
mization problem is cast into a generalization of the recently
proposed PhaseCut problem [7], for which a number of ef-
ficient estimation procedures readily exist, including convex
relaxations. The last point is made possible by exploiting a
previously unseen connection between a multivariate gener-
alization of the Von Mises distribution and the Mahalanobis
distance.

2. BAYESIAN FORMULATION

In this section, we introduce the Bayesian modeling that we
propose to exploit in the following and discuss its link to
the Mahalanobis distance, particularly interesting for the op-
timization procedure.

2.1. Observation model

Let M sensors record K complex signals through linear in-
stantaneous mixing, in the presence of both additive noise and
multiplicative phase noise. The noisy observation y ∈ CM is
then expressed as

y = Diag{φ}HAx+ n (2)

where A ∈ CM×K is the mixing matrix, x ∈ CK is
the source signal, n ∈ CM is the noise vector, φ =
[ejθ1 , . . . , ejθM ]> is the phase vector with θ , [θ1, . . . , θM ]>

∈] − π, π]M , the operator Diag{.} transforms row- or
column-vectors into diagonal matrices and ·H denotes the
complex conjugate transpose. For simplicity, we assume that
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the additive noise is zero-mean i.i.d. circular complex Gaus-
sian with variance σ2

n. Note that generalizing subsequent
derivations to an arbitrary noise covariance matrix Γn instead
is straightforward with appropriate changes of variable.

2.2. Von Mises prior

In the literature, model (2) has been already considered in
phase retrieval problems with a uniform prior on the phases θ
(see e.g. [8, 9]). Here, we look for a more informative model
enforcing uncertain structures on and between phases.

Considering phases naturally leads to directional statis-
tics. Among them, the most familiar one is probably the Von-
Mises distribution, defined independently for each variable
θm, m ∈ {1, . . . ,M} as

p(θm) =
1

2πI0(κm)
exp

(
κm cos(θm − µm)

)
, (3)

where κm ∈ R and µm ∈] − π, π] are parameters of the dis-
tribution, and I0(.) is the modified Bessel function of the first
kind of order 0. This distribution has been considered in the
literature, e.g. in [10]. In practice, it is well-adapted to sit-
uations where we want to take into account prior informa-
tion (such as the mean through parameter µm or the variance
through κm) on the phases independently of one another. Its
extension to the multivariate case is not straightforward and
can take different forms [12]. In this paper, we assume θ to
be distributed according to

p(θ) =
1

C(κ,∆)
exp

(
κ>c(θ,µ)

− s(θ,µ)>∆s(θ,µ)− c(θ,µ)>∆c(θ,µ)
)
, (4)

where C(κ,∆) is a normalizing constant and functions c and
s are respectively defined by, ∀m ∈ {1, . . . ,M},

cm(θ,µ)=cos(θm−µm), sm(θ,µ)=sin(θm−µm). (5)

The matrix ∆ is real-symmetric with zeros on its diagonal and
captures dependencies between phases. Without loss of gen-
erality1, we will assume in the sequel that µ = [0, . . . , 0]> ,
0M . This multivariate extension of the Von-Mises distribu-
tion was suggested at the end of [12], but does not seem
to have been extensively studied or used. We prefer it here
over other alternatives due to the following result (proof in
appendix A):

Lemma 1 Letµ = 0M , and let θ̂ = [θ̂1, . . . , θ̂M ]> maximize
the multivariate Von Mises distribution (4). We have:

φ̂ , [ejθ̂1 , . . . , ejθ̂M ]> = argmin
φ

|φi|2=1 ∀i

||φ− 1M ||2Γφ

1Assuming µ 6= [0, . . . , 0]> amounts to considering the observation
model y = Diag{φ̃}H Ãx with φ̃ = Diag{u}Hφ, Ã = Diag{u}A
and u = [ejµ1 , . . . , ejµM ].

where || · ||Γφ denotes the Mahalanobis distance with covari-
ance Γφ, 1M , [1, . . . , 1]>, and ∀(i, k) ∈ {1, . . . ,M}2

(Γ−1
φ )ik =

{
∆ik if k 6= i,
1
2κi −

∑
l 6=i ∆il if k = i.

(6)

In other words, maximizing the density (4) can be cast as a
quadratically-constrained norm-minimization problem. This
type of problem is central in the classical phase retrieval liter-
ature (see [7]), but does not seem to appear when using other
multivariate generalizations of the Von Mises distribution as
phase priors, e.g., the one studied in [12].

3. PHASE AND SIGNAL ESTIMATION

3.1. Maximum a posteriori

Using Lemma 1, it follows that the Maximum A Posteriori
(MAP) estimate of φ within model (2) and (4) writes:

φ̂MAP = argmax
φ

|φi|2=1 ∀i

log p(φ|y), (7)

= argmin
φ

|φi|2=1 ∀i

1

σ2
n

||y−Diag{φ}HAx||22

+ ||φ− 1M ||2Γφ . (8)

Following a similar idea as in [7], we couple this MAP es-
timation of the phase vector φ with a Maximum Likelihood
estimation of the source signal x:

x̂ML = argmax
x

log p(y;x), (9)

= argmin
x

||y−Diag{φ}HAx||22, (10)

= A+Diag{φ}y, (11)

where A+ stands for the Moore-Penrose pseudo-inversion of
matrix A. Reinjecting this estimate in the MAP problem (8)
leads to

φ̂MAP = argmin
φ

|φi|2=1 ∀i

1

σ2
n

||(IM−AA+)Diag{y}φ||22

+

∥∥∥∥(IM − 1M ) ·
(
φ
1

)∥∥∥∥2

Γφ

, (12)

where IM stands for the identity matrix and the Mahalanobis
distance term has been re-written to be homogeneous in u =
[φ 1]> ∈ CM+1. Using this trick, it follows that solving
(12) is equivalent to solving the M + 1-dimensional problem

û = argmin
u

|ui|2=1 ∀i

uHQu, where (13)
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Q =

(
M + σ2

nΓ−1
φ −σ2

nΓ−1
φ 1M

−σ2
n1>MΓ−1

φ σ2
n

∑
i,k(Γ−1

φ )ik

)
∈ C(M+1)2 , (14)

with M = Diag{yH}(IM−AA+)Diag{y}. It is easily ver-
ified that if û is solution of (13), then φ̂MAP = û1:M/ûM+1 is
solution of (12).

Interestingly, when Γ−1
φ = 0 (uninformative prior on

phases), (13) is equivalent to the program proposed by Wald-
spurger et al. [7] for classical phase retrieval. They refer to
this complex quadratically-constrained quadratic program as
PhaseCut, in reference to its real counterpart which is known
to be equivalent to the classical graph-partition problem Max-
Cut [13]. These non-convex problems are NP-hard in general,
difficult to solve in practice, and have been extensively stud-
ied, yielding a number of efficient optimization schemes for
particular instances. The most straightforward approach con-
sists in iteratively minimizing (13) with respect to each ui
alternatively, which can be done in closed-form [7]. Since the
problem is non-convex, this method is bound to converge to a
local minimum which depends on the initialization.

3.2. Lifting solution

A particularly popular alternative to solve (13) is referred to
as Lifting, and consists in solving the following convex semi-
definite program (SDP) instead :

argmin trace {QU}
U � 0

diag{U} = 1M
(15)

where � 0 denotes positive semi-definiteness. Note that (15)
is a relaxation of (13), in the sense that if Û = ûûH is a
rank-1 solution of (15), then û is a solution of (13). How-
ever, Û may not always be rank-1 in practice. In the classi-
cal prior-less phase retrieval case where Γ−1

φ = 0, the com-
bined extensive research efforts in [6] and [7] lay theoretical
grounds providing conditions on A for which solving (15) en-
ables stable recovery of the phase vector φ and signal vector
x with high probability. Extending these theories to the pro-
posed Bayesian generalization necessitates a deep research
investigation, which cannot be tackled within this short pa-
per. Rather, an experimental validation of the lifting approach
in the multivariate Von-Mises phase retrieval setting is con-
ducted in Section 4.

3.3. Algorithms

A large number of efficient generic SDP solvers are avail-
able, including interior-point methods [14] or augmented
Lagrangian methods [15]. As mentioned in [7], the block-
coordinate descent (BCD) method proposed in [16] is partic-
ularly simple and efficient for problems of the form (15), and
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Fig. 1. (Averaged) normalized correlation as a function of the
variance σ2

n for the i.i.d. 1D Von Mises prior.

is therefore used here. In practice, when the obtained solution
Û is not rank-1, a natural approach consists in selecting the
leading eigenvector of U.

4. EXPERIMENTS

In this section, we propose two different experimental setups
to assess the relevance of the above procedure. More pre-
cisely, we consider two particular cases of the multivariate
Von-Mises prior (4) : the 1D Von-Mises distribution and the
Markov chain.

For both setups, we confront it to two state-of-the-
art phase retrieval algorithms, namely PhaseCut [7] and
prVBEM [9]. The first one relies on the same optimization
procedure as the one proposed here, but does not exploit any
information on the phases to recover. The second one shares
the same Bayesian formulation (2) as the algorithm proposed
here but considers a non-informative, uniform distribution on
the phases. In the sequel, we will refer to our approach as
“informed PhaseCut”.

We consider the following general experimental setup.
Observations are generated according to model (2) with
M = 256 and K = 64. The elements of the dictionary
A (resp. vector x) are i.i.d. realizations of a zero-mean cir-
cular Gaussian distribution with variance M−1 (resp. 1). We
assess the performance in terms of the reconstruction of the
signal x. In particular, we consider the correlation between
the estimated signal and the one used to generate the data,

|x̂Hx|
‖x̂‖2‖x‖2

,

as a function of the noise variance σ2
n. This figure of merit is

evaluated from 50 trials for each simulation points.
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Fig. 2. (Averaged) normalized correlation as a function of the
variance σ2

n for the Markov chain prior.

4.1. 1D Von Mises prior

As a first experimental setup, we consider the case where the
phase noise is distributed on each sensor independently of one
another according to the Von Mises law (3) with parameter
µi = 0 and κi = 1, ∀i ∈ {1, . . . ,M}.

Figure 1 presents the performance of the three algorithms
with this particular prior distribution. As expected, informed
PhaseCut outperforms the other algorithms, proving a good
inclusion of the prior additional information. More partic-
ularly, the gap between them increases with the noise vari-
ance: for σ2

n = 0.6, informed PhaseCut achieves a correlation
around 0.7 against 0.3 for PhaseCut and prVBEM.

4.2. Markov chain

In a second experimental setup, we consider the particular
case where only the first two subdiagonals of ∆ are non-zero.
Considering a small variance of the phases θ, straightforward
calculus leads to

p(θ) ' 1

C(κ,∆)
(16)

exp

(
−
∑
i

(
(Γ−1
φ )iiθ

2
i − 2(Γ−1

φ )i(i−1)θiθi−1 + o(θ2
i )
))

,

where Γ−1
φ is linked to the parameters ∆,κ through (6). This

expression can be directly identified to a Markov chain such
as ∀i ∈ {2, . . . ,M}, θi = a θi−1+ωi,where ωi ∼ N (0, σ2

θ),
∀i and θ1 ∼ N (0, σ2

θ), providing that

(Γ−1
φ )ik =


− a

2σ2
θ

if k = i+ 1 or k = i− 1,
1+a2

2σ2
θ

if k = i 6= M,
1

2σ2
θ

if k = i = M,

0 elsewhere.

(17)

We suppose here that a = 0.8, σ2
θ = 0.1.

Figure 2 confirms the good behavior of informed Phase-
Cut observed in the first experiment setup: taking into ac-
count the structure of the missing phases, it allows a better
estimation (in the sense of the correlation) of the signal of
interest x. The advantage brought by such prior inclusion in-
creases with the noise variance: informed PhaseCut reveals
here again more robustness.

5. CONCLUSION

In this paper, we have presented a novel algorithm able to
solve the phase recovery problem with a multivariate Von
Mises prior distribution. To that end, we have showed that
this particular prior information can be efficiently integrated
into a Maximum A Posteriori estimation by means of a Ma-
halanobis distance. The proposed solution relies on a lifting
procedure and, to the extent of our experiments, reveals a co-
herent behavior with regard to non-informed state-of-the-art
algorithms.

A. PROOF OF LEMMA 1

We have:

||φ− 1M ||2Γφ (18)

= (φ− 1M )HΓ−1
φ (φ− 1M )

= trace {Γ−1
φ }+

∑
i,k

(Γ−1
φ )ik − 2

∑
i

(Γ−1
φ )ii cos(θi)

−
∑
i

∑
k 6=i

(Γ−1
φ )ike

−j(θi−θk) −
∑
i

∑
k 6=i

(Γ−1
φ )ike

−jθi

−
∑
i

∑
k 6=i

(Γ−1
φ )kie

jθi ,

= trace {Γ−1
φ }+

∑
i,k

(Γ−1
φ )ik − 2

∑
i

(∑
k

(Γ−1
φ )ik

)
cos(θi)

+
∑
i

∑
k 6=i

(Γ−1
φ )ik cos(θi − θk),

where we have assumed that (Γ−1
φ )ki = (Γ−1

φ )ik, ∀(i, k) ∈
{1, . . . ,M}2, or, in other words, (Γ−1

φ )ik ∈ R. Identifying
then parameters κ and ∆ of the multivariate distribution (4)
with (18), it comes straightforwardly that, under the condition
(6),

||φ− 1M ||2Γφ ∝ − log p(θ)

where ∝ denotes here equality up to a constant. This means
that we can use indifferently the multivariate Von-Mises dis-
tribution (4) or the Mahalanobis distance as a cost function if
we add to the latter the constraint |φi| = 1, ∀i ∈ {1, . . . ,M}.
�
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