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ABSTRACT

We propose a new regularization technique, named Hybrid Spatio-
Spectral Total Variation (HSSTV), for hyperspectral image (HSI)
restoration. Popular regularization techniques for HSIs are total vari-
ation functions (TV), and there have been proposed a variety of TVs
for HSI restoration. However, they do not fully exploit both spa-
tial and spectral smoothness, which are the underlying properties of
HSIs, and/or they result in computationally expensive optimization.
Our proposed HSSTV is designed to evaluate the two properties via
two types of discrete differences of an HSI, leading to much more ef-
fective regularization than existing TVs for HSI restoration. HSSTV
is defined with local discrete difference operators and the ℓ1/mixed
ℓ1,2 norm, so that optimization problems involving it can be effi-
ciently solved by proximal splitting methods, such as the so-called
alternating direction method of multipliers. Experimental results il-
lustrate the advantages of HSSTV over state-of-the-art methods.

Index Terms— Hyperspectral image restoration, total variation,
ADMM

1. INTRODUCTION

Hyperspectral imaging has been a very active research topic and of-
fers many applications in a wide range of fields, spanning from re-
mote sensing, geoscience and astronomy to biomedical imaging and
signal processing [1, 2]. This is because the very nature of a hy-
perspectral image (HSI), which consists of a 3D datacube with 2D
spatial and 1D spectral variation, reveals the intrinsic characteristics
of scene objects and environmental lighting.

Capturing such rich spatio-spectral information itself is a chal-
lenging task: various types of noise and other effects (e.g., blur
and/or missing entries) are inevitable through imaging process, so
that one needs to restore a clean HSI from such a degraded obser-
vation. In addition, much attention has been paid to one-shot hyper-
spectral imaging based on the compressed sensing frameworks [3,4]
for its acquisition efficiency, and it inherently requires to estimate a
full HSI from incomplete measurements. The said problems have
been tackled by variational approaches that characterize a restored
HSI as a solution of some optimization problems, where regulariza-
tion, modeling a priori knowledge about underlying properties on
HSIs, plays an important role to obtain a reasonable result under
such ill-posed or ill-conditioned scenarios.

A successful class of regularization techniques for HSIs would
be total variation functions (TV), which relies on the spatial smooth-
ness of HSIs, i.e., the total magnitude of local spatial differences is
small in HSIs. A popular one is the hyperspectral TV (HTV) [5]1,
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1HTV can be seen as a generalization of the standard color TV [6]

and more sophisticated versions leveraging semilocal/nonlocal in-
formation are also studied [7–9]. However, these TVs do not ex-
ploit spectral smoothness, another inherent property of HSIs. A re-
cently proposed one [10] considers the spectral smoothness, yield-
ing a powerful regularization technique for color images and HSIs,
but this TV requires high computational cost in optimization (mainly
due to singular value decomposition), which is a serious issue in HSI
restoration due to the high-dimensional nature of HSIs (this is also
the case with [7–9]).

Very recently, the spatio-spectral total variation (SSTV) [11] is
proposed for HSI denoising, which considers spectral smoothness
together with spatial smoothness. Specifically, in the definition of
SSTV, the local spectral differences of an HSI are calculated be-
fore the calculation of the local spatial differences (Fig.1, yellow
lines). As a result, SSTV is an effective (considering the spatio-
spectral smoothness) and computationally efficient (only exploiting
local information) regularization technique for HSIs, as outperform-
ing several popular regularization methods that are not limited to
TVs [5, 12–14]. On the other hand, it is clear from the calculation
of the discrete differences in SSTV that SSTV does not “directly”
evaluate the spatial smoothness of HSIs, so that it often causes un-
desirable noise-like effects (see Fig. 3).

Based on the above discussion, we propose a new total variation
for HSI restoration, termed as Hybrid Spatio-Spectral Total Varia-
tion (HSSTV). As will be explained in Sec. 2.1, HSSTV is designed
to evaluate both the direct spatial smoothness and the spatio-spectral
smoothness of HSIs in a unified manner. Therefore, it resolves the
drawback of SSTV while keeping its ability, leading to much bet-
ter regularization. In addition, HSSTV is defined with local discrete
differences and the ℓ1/mixed ℓ1,2 norm, as in the case of HTV and
SSTV, so that it can be efficiently dealt with by optimization meth-
ods based on proximal splitting, such as the alternating direction
method of multipliers (ADMM) [15–17]. Experiments on denoising
and compressed sensing reconstruction demonstrate the advantages
of HSSTV over several state-of-the-art methods.

2. PROPOSED METHOD

2.1. Hybrid spatio-spectral total variation

Let u ∈ RNB be a HSI with N pixels and B spectral bands, and
Dv , Dh, and Db are vertical, horizontal, and spectral difference
operators, respectively. Furthermore, we define a spatial difference
operator as D = (D⊤

v D⊤
h )

⊤ ∈ R2NB×NB . To exploit both the di-
rect spatial smoothness and the spatio-spectral smoothness of HSIs,
we propose a new TV for HSIs as follows:

HSSTV(u) :=

∥∥∥∥( DDbu
ωDu

)∥∥∥∥
1,p

, (1)
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Fig. 1. Calculation of local discrete differences in SSTV and the
proposed HSSTV. SSTV evaluates the ℓ1 norm of the spatio-spectral
differences (yellow lines). HSSTV evaluates the mixed ℓ1,p norm of
both the direct spatial and the spatio-spectral differences (red lines).

where ∥·∥1,p is the mixed ℓ1,p norm with p = 1 or 2 (NOTE: ∥·∥1,1
means the ℓ1 norm), and ω ≥ 0. Following the prior work [11],
we name this function as the Hybrid Spatio-Spectral Total Variation
(HSSTV). Clearly, HSSTV is a convex function. In the definition
of HSSTV, DDbu and Du correspond to the local spatio-spectral
differences and the local (direct) spatial differences, respectively, as
shown in Fig. 1 (red lines), and ω controls the relative importance
of the direct spatial smoothness to the spatio-spectral smoothness.
HSSTV evaluates these two kinds of smoothness by taking the ℓp
norm (p = 1 or 2) of four differences associated with each com-
ponent, and then summing up for all components, so that it can be
defined through the mixed ℓ1,p norm. When we set ω = 0 and
p = 1, HSSTV recovers SSTV. Hence, HSSTV can be seen as a
generalization of SSTV.

We remark that the design of HSSTV involving the direct spatial
differences is intended to suppress noise-like artifacts that are pro-
duced by only imposing the spatio-spectral smoothness, i.e., ωDu is
supplemental to DDbu. In addition, as can be seen in the results of
HTV (Fig. 3), imposing the direct spatial smoothness strongly on a
restored HSI would cause oversmoothing of the detailed structures.
Thus, the weight ω should be set to less than one. Indeed, we will
empirically show that a good choice of ω is around 0.05 to 0.1 for
various HSIs.

2.2. HSI restoration by HSSTV

2.2.1. Problem formulation

Consider to restore an original HSI ū ∈ RNB from an observation
v ∈ RM , which is cast as inverse problems of the form:

v = Φū+ n,

where Φ ∈ RM×NB (M ≤ NB) is a matrix representing a linear
observation process (e.g., blur and/or random sampling), and n is an
additive white Gaussian noise.2

Based on the above model, we formulate HSI restoration by
HSSTV as the following constrained convex optimization problem:

min
u

HSSTV(u)

s.t.
[

Φu ∈ Bv,ε := {x ∈ RM |∥x− v∥ ≤ ε},
u ∈ [µmin, µmax]

NB .
(2)

2In this paper, we mainly consider Gaussian noise cases but HSSTV can
be used in other noise cases, e.g., Poisson and sparse noises, together with
suitable data-fidelity measures.

The first constraint in (2) serves as data-fidelity to the observation
v and it is defined as the v-centered ℓ2-norm ball with the radius
ε > 0. As mentioned in [18–21], such a constraint-type formu-
lation facilitates the parameter setting because ε has a clear mean-
ing. The second constraint in (2) represents the dynamic range of u
with µmin < µmax. Both constraints are closed convex sets, so that
Prob. (2) is a convex optimization problem.

2.2.2. Optimization

Since Prob. (2) is a convex but highly nonsmooth optimization prob-
lem, a suitable iterative algorithm is required to solve it. In this pa-
per, we adopt ADMM [15–17]. It can solve convex optimization
problems of the form:

min
u,z

f(u) + g(z) s.t. z = Gu, (3)

where f and g are proper lower semicontinuous convex functions,
and G is a full column rank matrix. Here we assume that f is
quadratic and that g is proximable, i.e., the proximity operator3 [22]
of g is computable. For any z(0),d(0), the algorithm of ADMM is
given by u(n+1) = argminuf(u) +

1
2γ

∥z(n) −Gu− d(n)∥2,
z(n+1) = proxγg(Gu(n+1) + d(n)),

d(n+1) = d(n) +Gu(n+1) − z(n+1),

where γ > 0 is a step size of ADMM. In what follows, we reformu-
late Prob. (2) into Prob. (3) to solve it by ADMM.

First, for notational convenience, we define the operator Aω by

Aω :=

(
DDb

ωD

)
.

Then, we can express HSSTV as

HSSTV(u) = ∥Aωu∥1,p.

Second, by introducing the indicator functions4 of [µmin, µmax]
NB

and Bv,ε, Prob (2) can be rewritten as

min
u

∥Aωu∥1,p + ιBv,ε(Φu) + ι[µmin,µmax]NB (u). (4)

Finally, by letting

f : RNB → R : u 7→ 0,

g : R5NB+M → R ∪ {∞} :

(z1, z2, z3) 7→ ∥z1∥1,p + ιBv,ε(z2) + ι[µmin,µmax]NB (z3), (5)

G : RNB → R5NB+M : u 7→ (Aωu,Φu,u), (6)

Prob. (4) is reduced to Prob. (3). The resulting algorithm based on
ADMM is summarized in Alg. 1.

Since the update of u in Alg. 1 is strictly-convex quadratic min-
imization, it boils down to solving the matrix inversion:

u(n+1) = (A⊤
ωAω +Φ⊤Φ+ I)−1RHS (7)

RHS := (A⊤
ω (z

(n)
1 − d

(n)
1 ) +Φ⊤(z

(n)
2 − d

(n)
2 ) + (z

(n)
3 − d

(n)
3 )).

3The proximity operator of index γ > 0 of a proper lower semicontinuous
convex function f is defined by proxγf (x) := argmin

y
f(y)+ 1

2γ
∥y−x∥2.

4The indicator function of a nonempty closed convex set C is defined by
ιC(x) := 0, if x ∈ C; ιC(x) :=∞, otherwise.
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If Φ is a block-circulant-with-circulant-blocks matrix [23], we can
leverage 3DFFT to efficiently solve the inversion in (7) with the dis-
crete difference operators having periodic boundary, i.e., A⊤

ωAω +
Φ⊤Φ+ I can be diagonalized by the 3D discreat Fourier transform
and its inverse. If Φ is a semi-orthogonal matrix, i.e., ΦΦ⊤ = αI
(α > 0), we leave it to the update of z2, which means that we replace
ιBv,ε by ιBv,ε◦Φ in (5) and Φu by u in (6). This is because the com-
position of such a matrix with a proximable function also becomes
proximable, see (8). If Φ is a sparse matrix, we offer to use a precon-
ditioned conjugate gradient method [24] for approximately solving
the inversion, or to apply primal-dual splitting methods [25–27] in-
stead of ADMM.5 Otherwise, an image restoration method using a
stochastic variant of ADMM [28] might be useful for reducing the
computational cost.

The update of z1, the proximity operator of the mixed ℓ1,p norm,
is reduced to a simple softthresholding type operation: for γ > 0 and
for i = 1, . . . , 4NB, (i) in the case of p = 1,

[proxγ∥·∥1(x)]i = sgn(xi)max {|xi| − γ, 0} ,

where sgn is the sign function, and (ii) in the case of p = 2,

[proxγ∥·∥1,2(x)]i = max

{
1− γ

(∑3
j=0 x

2
ĩ+jNB

)− 1
2
, 0

}
xi,

where ĩ := ((i− 1) mod NB) + 1.
For the update of z2, since the proximity operator of the indi-

cator function of a nonempty closed convex set C is equivalent to
the metric projection onto C (i.e., proxγιC

= PC ), the computation
of proxγιBv,ε

corresponds to calculating the metric projection6 onto
the v-centered ℓ2-norm ball with radius ε, given by

PBv,ε(x) =

{
x, if x ∈ Bv,ε,

v + ε(x−v)
∥x−v∥ , otherwise.

In the case of ιBv,ε ◦Φ with Φ being semi-orthogonal, i.e., ΦΦ⊤ =
αI (α > 0), we can compute its proximity operator by using [29,
Table 1.1-x]:

proxγιBv,ε◦Φ
(x) = x+ α−1Φ⊤(PBv,ε(Φx)−Φx). (8)

The update of z3 also equals to the computation of the metric
projection onto the box constraint, i.e., for i = 1, . . . , NB,

[P [µmin, µmax]
NB(x)]i =


µmin, if xi < µmin,

µmax, if xi > µmax,

xi otherwise.

3. EXPERIMENTS

To demonstrate the advantages of HSSTV, we apply it to two specific
HSI restoration problems: denoising and compressed sensing (CS)
reconstruction, and compare it with HTV [5] and SSTV [11]. In the
denoising experiment, we also compare HSSTV with BM4D [30],
which is known to be one of the most effective nonlocal denoising
methods for 3D signals.

5Primal-dual splitting methods require no matrix inversion but in general
their convergence speed is slower than ADMM.

6Given a vector x̄ and a nonempty closed convex set C, the metric pro-
jection onto C is characterized by minx ∥x− x̄∥ s.t. x ∈ C.

Algorithm 1: ADMM method for Prob. (2)

input : z(0)1 , z(0)2 , z(0)3 , d(0)
1 , d(0)

2 , d(0)
3

1 while A stopping criterion is not satisfied do
2 u(n+1) = argmin

u

1
2γ

(∥z(n)
1 −Aωu− d

(n)
1 ∥2 + ∥z(n)

2 −

Φu− d
(n)
2 ∥2 + ∥z(n)

3 − u− d
(n)
3 ∥2);

3 z
(n+1)
1 = proxγ∥·∥1,p (Aωu(n+1) + d

(n)
1 );

4 z
(n+1)
2 = proxγιBv,ε

(Φu(n+1) + d
(n)
2 );

5 z
(n+1)
3 = proxγι

[µmin,µmax]NB
(u(n+1) + d

(n)
3 );

6 d
(n+1)
1 = d

(n)
1 +Aωu(n+1) − z

(n+1)
1 ;

7 d
(n+1)
2 = d

(n)
2 +Φu(n+1) − z

(n+1)
2 ;

8 d
(n+1)
3 = d

(n)
3 + u(n+1) − z

(n+1)
3 ;

9 n← n+ 1;
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Fig. 2. PSNR versus ω in (1) on denoising.

All the experiments were performed using MATLAB (R2016a,
64bit), on a Windows 10 Home (64bit) laptop computer with an Intel
Core i7 3.41 GHz processor and 16 GB of RAM. For test HSIs, we
took five HSIs from the SpecTIR [31] and MultiSpec [32], cropped
a region of size 256× 256× 32 for each HSI, and normalized their
dynamic range into [0, 1]. We use PSNR [dB] between an original
HSI ū and a restored HSI u, defined by 10 log10(NB/∥u − ū∥2),
for the quantitative evaluation of restored HSIs. We set the max
iteration number and the stopping criterion of ADMM to 5000 and
∥u(n) − u(n+1)∥ < 0.01, respectively.

3.1. Denoising

First, we conducted experiments on Gaussian noise removal, where
clean test HSIs were contaminated by an additive white Gaussian
noise n with the standard deviation σ, i.e., v = ū+ n. Specifically,
we solve Prob. (2) with Φ = I. For HTV and SSTV, we replace
HSSTV in (2) with HTV or SSTV, and solve it by ADMM. For a fair
comparison, the radius ε in Prob. (2) was set to the oracle value in
every method, i.e., ε = ∥ū − v∥. For BM4D, we used the program
code distributed by the authors of [30].

We show PSNR of denoised HSIs by each method for various
σ in the left of Tab. 1, where ω in HSSTV is set to 0.08 for the
ℓ1 case and 0.06 for the ℓ1,2 case. One can see that for all HSIs
and σ, HSSTV outperforms HTV and SSTV. Moreover, one also
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Table 1. PSNR in denoising experiments (left) and CS experiments (right).
σ HTV SSTV BM4D ℓ1-HSSTV ℓ1,2-HSSTV σ and r HTV SSTV ℓ1-HSSTV ℓ1,2-HSSTV

0.1 29.34 31.16 33.39 33.21 32.83
Beltsville 0.2 26.94 26.09 30.03 30.31 29.87 0.1, 0.2 26.23 24.37 29.65 29.19

0.3 25.81 22.89 28.04 28.79 28.38
0.1 30.05 31.96 34.56 35.29 35.28

Suwannee 0.2 27.35 27.58 31.53 32.09 32.15 0.1, 0.2 26.48 25.70 31.41 31.47
0.3 25.91 24.52 29.79 30.41 30.49
0.1 26.88 30.99 31.88 32.21 31.78

DC 0.2 24.31 25.93 28.27 28.78 28.38 0.1, 0.2 23.30 24.18 28.00 27.60
0.3 23.07 22.71 26.43 27.00 26.64
0.1 31.64 32.05 35.65 36.37 36.34

Cuprite 0.2 29.35 27.23 32.39 33.48 33.48 0.1, 0.2 28.78 25.80 33.01 32.99
0.3 28.19 24.54 30.60 31.99 32.01
0.1 28.99 31.86 33.44 34.16 33.90

Reno 0.2 26.51 26.57 29.91 30.94 30.75 0.1, 0.2 25.56 25.57 30.26 30.06
0.3 25.22 24.48 28.12 29.29 29.14

20.01 30.05 31.96 35.29 35.28 34.56

26.23 24.37 29.65 29.19
original image observation HTV SSTV ℓ1-HSSTV ℓ1,2-HSSTV BM4D

Fig. 3. Resulting HSIs with their PSNR on denoising (top, Suwannee) and CS (bottom, Beltsville) experiments.

sees that the denoising ability of HSSTV is better than BM4D for
most cases, despite the fact that HSSTV does not exploit nonlocal
information. We observe that the performance of SSTV degrades
for large σ, which would be due to the absence of evaluating the
direct spatial smoothness. Fig. 2 plots PSNR of the denoised HSIs
by HSSTV versus ω averaged over the five HSIs, which says that
ω ∈ [0.05, 0.1] is a good choice in most cases.

Fig. 3 (top) depicts the denoised results on Suwannee (σ = 0.1)
with their PSNR. One can see that (i) details are lost in the HSI
denoised by HTV, (ii) SSTV cannot remove noise sufficiently, and
(iii) HSSTV has a strong ability of detail-preserving denoising.

The average CPU time of one iteration of Alg. 1 (HSSTV with
the ℓ1 norm, Suwannee) is 0.67 sec, that of ADMM for HTV is 0.24
sec, and that of ADMM for SSTV is 0.31 sec, respectively. Since
HSSTV is designed with the ℓ1/mixed ℓ1,2 norm as well as HTV
and SSTV, the computation of the associated proximity operator is
reduced to a soft-thresholding type operation, which means that the
computational cost of using HSSTV is low and is not much different
from HTV and SSTV.

3.2. Compressed sensing reconstruction

We also conducted experiments on compressed sensing (CS) recon-
struction [33, 34], where we try to recover an original HSI from its
incomplete measurements. In this case, Φ ∈ RM×NB in (2) is a

random sampling matrix (M = rNB with r being the rate of ran-
dom sampling), which is semi-orthogonal (thus we can use (8)). We
set r = 0.2 and σ = 0.1 (the standard deviation of the additive white
Gaussian noise) in the experiments. The radius of the ℓ2-norm ball
was set to ε = ∥Φū− v∥.

The right of Tab. 1 shows PSNR of reconstructed HSIs. As in
the case of denoising, HSSTV leads to much better reconstruction in
terms of PSNR than HTV and SSTV.

Fig 3 (bottom) is a showcase of the reconstructed results on
Beltsville. One can see that (i) HTV causes oversmoothing, (ii)
SSTV produces noise-like artifacts, and (iii) HSSTV well recon-
structs meaningful details without artifacts.

4. CONCLUDING REMARKS

We have proposed a new total variation function (TV) for HSI
restoration. Our proposed TV, named the hybrid spatio-spectral total
variation (HSSTV), exploits both the direct spatial smoothness and
the spatio-spectral smoothness of HSIs. HSI restoration by HSSTV
is formulated as a convex optimization problem, and it is efficiently
solved by ADMM. Experimental results on denoising and com-
pressed sensing reconstruction demonstrate the effectiveness and
utility of HSSTV. Finally, we remark that HSSTV would be able to
serve as a building block in a variety of HSI restoration scenarios
that are not examined in this paper.
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