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ABSTRACT It is known that when a Delta-Sigma modulator is used to
Delta-Sigma modulators are often utilized to convert agalo guantize an analog signal into a d'g'té.ll S|_gnal, oversamgpli
can reduce the error due to the quantization. However, over-

signals into digital signals. The quantization error of dt®e T . . .
: . sampling increases the number of bits per time if the same
Sigma modulator can be reduced by oversampling. How= - .
S . . umber of bits are assigned to each output of the quantizer. |
ever, oversampling increases the number of bits per time i - . AR
. . may degrade the distortion due to quantization if the number
the same number of bits are assigned to each output of th

quantizer. Due to limited bandwidth, the rate-distortien r ot bits per time is fixed. To balance the rate and the distor-

lation is necessary to balance the rate and the distortion. I};ogélr;esgité-dlstortlon relation of the Delta-Sigma miador

this paper, we analyze the relationship between the rate and . . .
the distortion of an optimal scalar Delta-Sigma moduldtat t It hgs been founpl In ,[10] that Tor bar!dllm|ted 3|gr1als,
the variance of the distortion of a simple single-loop oite-b

minimizes the variance of the error in the output of the sys- ‘ o
tem connected to the Delta-Sigma modulator. Numerical exP€!ta-Sigma modulator decays at a rate@f™*), where

amples are provided to show rate-distortion relations ef th 18 the_ oversampling ratio. In [11], itis proven that for
optimal Delta-Sigma modulators. bandlimited bounded signals, the squared maximum abso-

lute value of the distortion of a one-bit Delta-Sigma mod-
Index Terms— Quantization, Delta-Sigma modulator, yjator can decrease at a rate @fA—*) and then a family
rate-distortion of one-bit Delta-Sigma modulators that attain this rate has
been provided. In [12], optimal filters in this family are de-
1. INTRODUCTION signed to minimize the decay rate, which shows that an ex-
ponential rate of0(279102%) is achieved by the designed
Quantization is a fundamental process in signal procesdilter. On the other hand, the mean squared error (MSE) of
ing. The simplest type of quantizer is the uniform quantizerthe optimal one-bit Delta-Sigma modulator that minimizes
which has fixed-length codewords. The uniform quantizer i$he MSE under the constraint on the variance of the input
not efficient since it does not take account into the stasisti to the uniform quantizer decreases at an exponential rate of
of the input and/or the information on the system connecte@(27°-%7*) [13]. This improvement becomes possible by
to the quantizer. Additional information can be exploitedexploiting the knowledge on the power spectral density func
to obtain good quantizers. Under the assumption that théon of the input, which is not always available, and by us-
quantization error is a white uniformly distributed randsea  ing additional pre-filter and post-filter with infinite ordern
quence, among quantizers having a fixed-length codeword#is paper, we clarify the rate-distortion relation of cenv
the Lloyd-Max quantizer is optimal in the sense that it mini-tional Delta-Sigma modulators without pre/post-filtersanh
mizes the distortion due to the quantization error [1, Coap. the spectrum of their input cannot be used.
However, the probability density function of the input teth After formulating our problem as an optimization prob-
quantizer is required to construct the Lloyd-Max quantizer lem, we show that the amplitude response of the optimal error
Quantization with error feedback is more efficient thanfeedback filter that minimizes the MSE can be parameterized
the uniform quantizer. It has a uniform quantizer and an erby one parameter. The optimal error feedback filter can be
ror feedback filter, in which the filtered error of the uniform determined numerically by minimizing the MSE with respect
quantizer is fed back. Quantization with error feedback igo this parameter. Then, the relationship between the num-
adopted in Delta-Sigma modulators, which are often utilize ber of bits used for quantization and the achievable MSE are
to convert real values into fixed-point numbers and vicearersclarified. This is our main contribution on the rate-distmmt
[2]. Error feedback filters have been designed to mitigate thanalysis of optimal Delta-Sigma modulators. It also demon-
quantization error [3, 4, 5, 6, 7]. Quantization with erreed-  strates the contribution of oversampling to the reductibn o
back can also be used to reduce the effect of the quantizede MSE. Numerical examples are provided to show the rate-
coefficients in fixed-point digital filters [8, 9]. distortion relation.
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Fig. 1. Quantizer with an error feedback filter 3. RATE-DISTORTION ANALYSIS OF

DELTA-SIGMA MODULATORS

2. QUANTIZATION WITH ERROR FEEDBACK The static uniform quantizer can be described by two param-

Figure 1 depicts our quantizer with error feedback, wher&!€'S: the quantization intervé(>> 0) and the saturation level
2 is the input to the quantizer with error feedbaekis its (> 0). Take amid-rise quantizer as an example, whose out-

output, and)(-) denotes a conventional static uniform quan-PUt {0 aninput is expressed as

tizer. All signals are assumed to be of discrete-time. We de- (i+1)d, €elid (i+1)d), [¢|<L+2

note thez transform of a sequencé = {f}32, asF[z] = ) = I. €>L+ 4

> neo fuz". We also express the output sighalf a linear L €< —L %

time invariant (LTI) system, whose transfer functionfig], ’ 2 (3)

to the inputa = {a;}°, asb = Flz]a, wherez"!isa unit-  ¢o; being integer.

time delay operator. If we assigrb bits to the mid-rise quantizer, then the num-

In Fig. 1, the quantization errar = v —u of the uniform  per of quantization levels 2. The dynamic rangg-L, L]
quantizer is filtered by?[z] — 1 and is fed back. The first ofthe mid-rise quantizer can be expressefifas= (2 —1)d.
coefficient of the impulse response Bfz] is assumed to be For our analysis, as in [13], we assume that a sufficient

1, which impliesR[z] — 1 is strictly causal. The minus 1in nymper of bits are assigned to the output of the uniform quan-
R[z] — 1is just for simplicity of presentation. tizer so that:

The inputu to the uniform quantizer is expressedas- ) ) )
2+ (R[z] — 1)w. The quantization error of quantization with Assumption 1. The error due to overloading (or equiva-
error feedback can be defined @s= v — z, which should lently, saturation) is negligible.
be differentiated with the quantization errorof the uniform The inputz to the modulator is assumed to be a wide-

quantizer. It is easy to see that they are related sueh-as ggnge stationary process having zero mean and varighnce
R[z]w. Then, the output of the quantizer can be expressed ade also assume that:

v =2z + R[zJw. (1)  Assumption 2. The quantization error signab of the uni-
Borm quantizer is a white random signal with zero-mean and

We assume that the output of the quantizer is the input to__ . . . -
P q P variances?2 and uncorrelated with the input of the uniform

the systemP[z] as depicted Fig. 2. The outpytof P[z] can

be expressed as= P[Jv = Plz]z + ¢, wheree is the error  dUantizer
in the output introduced by the quantization given by The dynamic range of the uniform quantizer is determined
¢ = Pz|R[z]w. @) ?hyatth[i 5c}y-namm range of its input. It is reasonable to assume

_Quantization with error feedback has been developed t@ o mption 3. For a fixed number of quantization levels, the
mitigate quantization errors in Delta-Sigma modulators3  \ariances? of the quantization error of the uniform quantizer

5,6, 7] as well as in digital filters [8, 9]. If the frequency-re 5 yrhortional to the variance? of its input and the ratio is
sponse of the input is available, th&fv], which is also called denoted as

the noise shaping filtercan be designed to reduce the effect o2
of w in the frequency band of. This technique is known T2 (4)
asnoise shapingr error spectrum shapinge, 3, 9, 14]. It “ .

has been shown in [13] that the mean squared error (MSE) L€t us denote the; norm of a filter H[z] as||H[z]||
of the optimal one-bit Delta-Sigma modulator decreases at ayhich is defined aBHz)|| = (& /" H* [ej“]H[ejW}dw) 5,
exponential rate of (20-507*), where is the oversampling 1o+ is the complex conjugﬂate ;f

ratio. However, the input spectrum is often unavailable in From Assumption 2, the variance of the input to the uni-
practice. The purpose of this paper is to derive the MSE Oform quantizer is expreésed as

Delta-Sigma modulators when the input spectrum cannot be

used. o2 =02+ ||R[z] — 1|[*c2. (5)

P
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Then, under Assumption 3, the variance of the quantizatioitheorem 1. For any~ > 0, the optimal function of13) can

error of the uniform quantizer is given by?, = 02/(y —  be expressed with a parameteias
[|[R[z] — 1]?), which requiresy — ||R[z] — 1||*> > 0. Since 6(c)
R[z] has a unit gain, we hayeR[z] — 1||>+ 1 = || R[z]||> and Ta(W) = ——=— (14)
P*w)+a
2 o (6) where
O = ———————.
v+ 1—|[[R[2]|]? L
The variance of the error in the output of the system intro- 0(a) = exp (E /_Tr In(p”(w) + a)d‘”) - (19

duced by the quantization is given By[z] R[z]||?02,. Sub-

stituting (6) into this results in Then, the optimak can be found based on the following

theorem:
2
|Plz]R[z]||?02 = M 2, (7) Theorem 2. For anyy > 0, the optimaky, denoted by,
v+ 1 =Rl that minimizes the MSE, satisfies,; > 0 and
We have to obtain the minimum of the MSE given by (7) 02 (topt)
for a fixed number of bits. For given? and P[z], we can y4+1=—"F (16)

minimize the MSE with respect t&8|z] as follows. opt

To stabilize the quantize?[z] must be stable. Then, as ~ Now suppose that the discrete-time syst(y is the dis-
a2 in (7) is a scalar, our problem can be formulated as th&retized version of the original continuous-time syste(s),
following minimization: which is assumed to be bandlimited as follows:

|P[z]R[2]||? Assumption 4. The continuous-time systeR\(s) is band-

min (8)  limited in[—7 /T, 7/Ts] and1/Ty is its Nyquist frequency.

RlZl€RHA 7 + 1 — |[R[2]|?
Sampling with sampling period; /X for \ a positive in-
teger is known as oversampling. The integeis called the
IIR[Z]||> < v+ 1 (9) oversampling ratipwhich is the sampling frequency divided
) ) _ by the Nyquist frequency. We assume ti4] is the sampled
whereRH is the set of stable proper rational functions with system ofP(s) with sampling period’, /A. To compare the

real coefficients. ) ) MSE with the MSE with the knowledge on the input spectrum
To enable theoretical analysis, we relax the stable propgp, [13], we normalizeP[z] such as

rational functionR|[z] to a functionr(w) € Lo, that is piece-

subject toR[co] = 1 and

wise differentiable or—, 7], has at most a finite number of Ple™] = P(w) for |w] <we 17)
discontinuity points, and satisfies fay > 0 that With we = /.

1 /7 Finally, we can state our main theorems:

— i dw = cg. 10 .

2 J_ . nr(w)dw = co (10) Theorem 3. Let the oversampling rate beandy = v + 1

where~ is defined in Assumption 3. The MSE of the modula-

The L, norm ofg(w) € Lo is defined as tor is a function of and \ and is denoted a®(v, \). Then,

1 (", D(v, \) satisfies
la@IF =5 [ ¢ .
TJ—n D(v, ) = aopr = D(v™,1). (18)
We denote the set df, functions that satisfies (10) &s. We Since the uniform quantizer cannot outperform the mod-
also define a subset @ functions as ulator without oversampling, we have(v, 1) < ||P[z]||? /7.
€ = {r(w): )12 < 7 + 1} (12) It follows from (18) that

. . Theorem 4. The MSE of the optimal modulator is upper
Although we extend the class of functions, from Lemma 1 mbounded such that

[13], we can find a stable proper rational functiBifr] such

that| R[e’]| approximates(w) arbitrarily well on[—, ). D(v,\) < ( L ) | P[2])]|2. (19)
Now our problem is to find the optimal function such that T\ -1
lp(w)r(w)]|? Theorem 4 shows that the MSE of the Delta-Sigma mod-

Topt(w) = arg (13)  ulator decays at the rate 6f(»—*). On the other hand, the
decay rate of the Delta-Sigma modulator having pre/post-
In the following, we omit the proofs for our results due to thefilters designed with the knowledge of the input spectrum is
lack of space, which are presented in [16]. O(v=/)\) [13, Theorem 6]. The decay rate is faster than
The optimal function cannot be expressed in a closedthe conventional Delta-Sigma modulator by a factoi pA,

form but can be characterized with one parameter as followsvhich is the benefit of availability of the input spectrum.

r(w)€CoNCy ’H‘l_—HT(M)HQ .
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Fig. 3. MSEs of the optimal feedback quantizer, the optimalFig. 4. MSEs of the feedback quantizers with ideal feedback
feedback quantizer [13] (dotted curve), and the uniforrmqua filters and feedback quantizers with IIR feedback filtersref o
tizer (dashed curve) with different oversampling ratefora  der four approximated by the Yule-Walter method for differ-
colored input, where, x, andJ correspond to the oversam- ent oversampling rate’s whereo, %, and] correspond to the
pling ratiosA = 2, A = 3, and)\ = 4, respectively. oversampling ratios = 2, A = 3, and\ = 4, respectively.

4. NUMERICAL EXAMPLES creases, the MSE decreases and the increment of the MSE
gain decreases.
To validate our analysis, we consider a continuous-time sys  |n Fig. 3, we have utilized ideal feedback filters both
tem of order four whose transfer function is for the feedback quantizer and the feedback quantizer with

(9 = RO AT L TG E B8y P e deal feedback fiters for the op-
s* +5.0885% +9.7895% + 8.206s + 2.548 timal feedback quantizers using IIR filters of order four by
We model the continuous-time input signal as a stationarthe Yule-Walker method [18]. We just normalize the approx-
process with a zero mean and a spectrum giveiwfy) =  imated filter so that the head of its impulse response is unity
¢/|jw+2.62|% wherec is a constant to normalize the sampled ~ Fig. 4 illustrates the MSEs of the feedback quantizers
signal. We discretize these with a sampling pefigd= 0.1  with ideal optimal feedback filters and the feedback quantiz
to obtain the discrete-time systefjz] and the input:. ers with feedback filters of order four approximated by the

The loading factor is defined dss = L /o, = 2°d/(20,)  Yule-Walker method. The approximation by the Yule-Walker
[17], which regulates the frequency of the overloading. Wemethod suffers a small loss due to the error by the normaliza-
setitto be four. Fob = 1,2,...,8, we havey = 3-2%* /L7 tion.

[17]. Then, for a giveny, we numerically find the optimal
from (15) and (16) that is the minimum MSE replacin@) 5 CONCLUSIONS
by pa(w) in (14).

For the oversampling ratia = 1,2,3,4, Fig. 3 com- e have presented the rate-distortion analysis of quastize
pares the MSEs of the optimal feedback quantizer, the optiyith error feedback. We have shown that the amplitude re-
mal feedback quantizer with the pre-/post-filters [13] {ddt  sponse of the optimal error feedback filter that minimizes
curve), and the uniform quantizer (dashed curve), whe#¢  the MSE can be parameterized by one parameter and can be
andL] correspond to the oversampling ratids= 2, A = 3, found numerically. With the optimal error feedback filtéret
and\ = 4, respectively. For every quantizer, oversamplingre|ationship between the number of bits used for the quanti-
reduces the MSEs. However, we also find that oversamplingation and the achievable MSE has been clarified. Numerical
is not so effective, since the number of bits per unit timeis  examples have been provided to demonstrate our analysis and

The feedback quantizer has an approximately 10 dB gaigynthesis.
against the uniform quantizer that is enabled by utilizing t
feedback filter that is optimized based on the systex. Acknowledgment
A further gain is obtained by exploiting the input spectrum
for the quantizer having an optimized feedback filter and preThis work was partly supported by JSPS KAKENHI Grant
Ipost-filters. For all quantizers, as the oversamplingrimti ~ Number JP16K06356.
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