
A FINITE RATE OF INNOVATION MULTICHANNEL SAMPLING HARDWARE SYSTEM 

FOR MULTI-PULSE SIGNALS 

 

Ning Fu, Member, IEEE, Liwen Sun, Guoxing Huang, Shuaile Du 

 

Dept. of Automatic Test and Control, Harbin Institute of Technology 

Harbin, 150080, Heilongjiang Province, P.R.China 

Email: funinghit_paper@163.com 
 

ABSTRACT 
 

Multi-pulse signals are composed of finite pulse streams of 

arbitrary pulse shape. With the pulse shape known, a multi-

channel sampling scheme for multi-pulse signals can oper-

ate at the rate of innovation, which is much lower than the 

Nyquist rate. The sampling system is based on low-pass 

filters, oscillators and integrators. By now there is no hard-

ware to practice the approach. In this paper, we design a 

hardware system and discover that the non-idealities of low-

pass filters will lead to failing in signal reconstruction. We 

research how the low-pass filters affect the reconstruction 

and solve the problem by channel calibration. The experi-

ments show that channel calibration compensates most of 
the errors induced by low-pass filters, and this approach can 

achieve better estimation of time-delays and amplitudes of 

multi-pulse signals with a known pulse shape.
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1. INTRODUCTION 
 

In modern signal processing, analog signals must be trans-

mitted into digital signals by sampling. To perfectly recon-

struct the original signal from its samples, the Shannon-

Nyquist theorem requires the sampling rate to be twice as its 

highest frequency, i.e., the Nyquist rate. However, the 

Nyquist rate of wideband signals is too high to achieve [1-3]. 

To reduce the sampling rate, Vetteri et al exploit a new 

sampling theorem for signals with finite rate of innovation 
(FRI). FRI signals have a finite number of degrees of free-

dom per unit time [4-6]. The minimal sampling rate for a 

FRI signal is equal to its innovation rate, which is usually 

much lower than its Nyquist rate. 

As a representative of typical FRI signals, the multi-

pulse signal is composed of several pulses in a short time. 

When the pulse shape is known, each pulse of the multi-

pulse signal is specified by its time-delay and amplitude. 

Multi-pulse signals are widely used in neuronal activity [7], 
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bio-imaging [8] and ultrawideband communications [9-10]. 

Since the multi-pulse signal is highly compact in time, its 

Nyquist rate is much higher than its innovation rate. But 

considering its parametric characteristic, it can be sampled 

by FRI sampling schemes at a much lower rate and recon-

structed by special algorithms. 

The FRI sampling schemes of multi-pulse signals can 

be divided into single-channel and multichannel sampling 

schemes. For single-channel cases, the multi-pulse signal is 

sampled by designed sampling kernels. Kernels which have 

infinite support in time cannot be achieved physically, such 

as sinc and Gaussian sampling kernels [4]. In contrast, poly-

nominal reproducing kernels, exponential reproducing ker-

nels, rational kernels [11] and the SoS (Sum of Sincs) [8] 
kernel are highly compact in time.  

Compared with the single-channel cases, the multi-

channel sampling scheme reduces the sampling rate and the 

complication to design sampling kernel in each channel. A 

multichannel system comprised of two first-order resistor-

capacitor networks is put forward in [12]. Another multi-

channel system based on E-spline kernels is proposed for 

pulses of arbitrary shape [13]. There are other two alterna-

tive multichannel schemes for pulses of arbitrary shape. One 

is based on a union of subspaces [14], and the other one is 

based on filter banks to sample radar pulse signals [15-16]. 

Up to now, most sampling schemes for multi-pulse sig-

nals have too many restrictions to be achieved physically. 

Based on the ideas of Xampling, i.e., sampling for struc-

tured analog signals [17-19], Eldar et al propose a multi-

channel sampling scheme similar to the modulated wide-

band converter (MWC) [17, 20-21] system to sample pulse 
streams at the rate of innovation [22]. They discuss the cases 

of sampling finite and infinite pulse streams and propose 

pulse sequence modulation as an alternative approach. 

In this paper, based on the works of Eldar et al [22], we 

design a multichannel sampling hardware system using 

pulse sequence modulation, and verify that it can achieve 

the rate of innovation of multi-pulse signals. In addition, 

when testing the performance of the system, we find that the 

non-idealities of low-pass filters will lead to failing in signal 

reconstruction. So we propose an approach to calibrate each 

channel and compensate the estimation errors induced by 

filters. The hardware experiments demonstrate that, the sig-
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nal reconstruction is more precise after channel calibration. 

Besides, multi-pulse signals can be recovered from the pro-

posed minimal-rate samples. 

The remainder of this paper is organized as follows. In 

Part 2 we introduce the multichannel sampling scheme for 

multi-pulse signals with pulse sequence modulation. In Part 

3 we design a hardware system, discuss the non-idealities of 

low-pass filters and the approach of channel calibration. Part 

4 lists the hardware experiments and results. Finally we 
draw conclusions in Part 5. 

 

2. SAMPLING AND RECONSTRUCTION OF MULTI-

PULSE SIGNALS 
 

2.1. Model of Multi-pulse Signals 
 

The multi-pulse signal  ( ) shown in Fig. 1 contains   puls-

es of a known pulse shape  ( ) in the time-window [   ) 
[18]. We assume that in [   ), none of the   pulses is inter-

ceptive.  ( ) can be defined as 

  ( )  ∑   (    )    [   ) 

 

   

 

 
(1) 

From (1), in [   ),   ( ) has    degrees of freedom,  

{     }   
 . So the rate of innovation of  ( ) is    ⁄ .  

 [ ] is the Fourier series coefficients of  ( ).  ( ) is 

the CTFT of  ( ). The relation between  [ ] and {     }   
   

can be expressed as [8] 

  [ ]  
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 )∑   

  
  
 

      

 

   

  (2) 

 denotes a set of  consecutive integers for which 

 (    ⁄ )       .   denotes a     diagonal matrix 

with     diagonal element (  ⁄ ) (    ⁄ ). And  ( ) de-

notes a     matrix with      element    
  
 

   , where 

  {       } .   denotes a length-  vector with      ele-

ment   .   denotes a length-  vector with     element  [ ]. 
Then (2) can be written in a matrix form as [22] 

     ( )   (3) 

(3) depicts the reconstruction model of multi-pulse sig-

nals. If the Fourier series coefficients  [ ]  are known, 

{  }   
  can be estimated by the annihilating filter [1]. Other 

algorithms such as matrix-pencil [23] and ESPRIT [24] are 

also applicable. Then {  }   
  can be estimated as 

     ( )      (4) 

 

2.2. Multichannel Sampling Scheme 
 

The multichannel sampling scheme obtains {  }   
 

 as the 

mixing Fourier series coefficients of  ( ). The scheme is 

comprised of low-pass filters, mixers and integrators. As 

depicted in Fig. 2, in the     channel,  ( ) is modulated by 

  ( ). Then the output signal of the mixer is integrated over  

T0
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Fig. 1. Example of a multi-pulse signal with     pulses. In this 

example, two of the pulses are overlapping. 
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Fig. 2. Multichannel sampling scheme of multi-pulse signals 

 

the window [   ).   ( ) is described as [22] 

   ( )  ∑   
  

   
  
 

            (5) 

  denotes a     matrix with      element    .   de-

notes a length-  vector with     element   . Then a matrix 

form is obtained as 

       (6) 

Then  [ ] can be recovered as follows: 

       (7) 

The symbol   represents left-inverse of a matrix. Con-

sidering that the modulating matrix   should have full col-

umn rank, the condition        is necessary [22]. 

Since there are   samples obtained in [   ), the sampling 

rate is     ⁄ . When       ,         ⁄ , so this 

scheme can operate at the rate of innovation. 

 

2.3. Pulse Sequence Modulation 
 

Design of   ( )  in (5) is complicated. Now consider using 

pulse sequences {  ( )}   
 

 instead. In order to remove the 

frequency components contained in {  ( )}   
 

 but not speci-

fied by , low-pass filters are needed before modulation. 

   ( )(       ) is given as 

   ( )  ∑ ∑  [ ] (  
 

 
    )  

   

      

 (8) 

In (8),  ( ) is a single rectangular pulse defined as 

  ( )  {
   [  

 

 
]

   [  
 

 
]

  (9) 
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We choose   [ ] as sequences of ±1, which are equal 

to cyclic shifts of one basic sequence. The basic sequence is 

composed by ±1 randomly [22]. 

In the     channel, let   ( ) be the input signal of the 

low-pass filter and  ̃ ( ) denotes the output signal. It can be 
expressed as 

  ̃ ( )      
 
  
 

               (10) 

To make sure  ̃ ( ) is real valued, should satisfy (11). 

That means   is an odd number and         . 

   ⌊
 

 
⌋        ⌊

 

 
⌋ (11) 

 ( ) is the CTFT of  ( ). Denote by  ( ) the frequen-

cy response of the low-pass filters.  ( )  is the CTFT of 

 ( ). Then     in (5) can be determined by (12). 

     
 

 
∑  [ ]
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  ) (

  

 
  )    

  
 

    (12) 

In (12),         and         . Then (12) can 

be written in a matrix form as 

        (13) 

In (13),   denotes a     matrix with      element 

  [ ]. It must have full column rank.   denotes a     

matrix with      element    
  
 

   .   denotes a     ma-

trix with      element defined as 

     
 

 
 (

  

 
  )  (

  

 
  )  (14) 

 

3. HARDWARE SYSTEM DESIGN AND ANALYSIS 

 

3.1. Hardware Design 
 

Our hardware is designed to sample multi-pulse signals 

composed of 2 pulses. The highest frequency of the multi-

pulse signal is less than 5 kHz. There are five sampling 

channels in our hardware system. And we use the annihilat-

ing filter to recover time-delays of the Gaussian pulses. 

The structure of each channel in our hardware system is 

shown in Fig. 3. Each channel is comprised of MAX274 

(low-pass filter), AD633 (analog multiplier) and a first-order 
RC network as integrator. The whole hardware system 

works on a PXI platform. PXIe-5442 generates multi-pulse 

signals. PXIe-6368 and PXI-6255 are multifunctional data 

acquisition devices developed by National Instruments (NI). 

They also play a role of generating modulating pulse se-

quences input to the five channels. The chassis PXIe-1082 

offers trigger bus for synchronization in the five channels.  

MAX274 is an eighth-order continuous-time active 

power filter. It contains four independent cascadable se-

cond-order sections. Each section can implement the filter 

response of Butter-worth, Bessel or Chebyshev only by four 

external resistors. Based on MAX274, we design a sixth-

order Cheybeshev Type I low-pass filter with the cut-off 

frequency higher than 400Hz. It is required to have a decay  
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Fig. 3. Hardware structure of each sampling channel 

 

 

Fig. 4. Circuit of designed low-pass filter by MAX274 

 

 

Fig. 5. Real product of low-pass filters in 5 channels 

 

of -20dB at 600Hz. The peripheral circuit of MAX274 is 

shown in Fig. 4, and the real product is shown in Fig. 5. 

 

3.2. Non-idealities of Low-pass Filters 
 

Considering the non-idealities of low-pass filters, that is, 

{  ( )}
   
 

 of low-pass filters in   channels are hard to be 

ideal or identical, and the output of low-pass filters may 

contain DC bias. So (13) can be updated as 

  ̃  (  )  ̃    (15) 

  denotes point multiplication of two matrixes. In (13) and 

(15), the only difference between    and  ̃ is that, for the 

element of  ̃ ,  (
  

 
  )  is changed into   (

  

 
  ) . Let 

  ⌊ 
 
⌋   . Then   denotes a     matrix with the     

column defined as the DC bias induced by low-pass filters 

in each channel, and the other columns are all zero vectors.  
In conclusion, the non-idealities of low-pass filters af-

fect the modulating matrix  . According to (15), if the actual 
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frequency response is obtained by measurement, each chan-

nel can be calibrated by correcting the matrix  . After chan-
nel calibration, the original multi-pulse signals will be re-

covered from samples more precisely. An alternative meth-

od of channel calibration is proposed in the next section. 

 

3.3. Channel Calibration 
 

The key of channel calibration is to obtain the actual fre-

quency responses of low-pass filters in each channel. The 

specific steps of our proposed method are listed as follows:  

Step 1, Generation of input signals. Generate sinusoidal 

signals with different frequencies             ⌊ 
 
⌋⁄  

and input them to the low-pass filters successively. The am-

plitudes are set to 1V and the initial phases are set to 0. 

Step 2, Measurement of output signals. In the     chan-

nel, when the frequency of the input sinusoidal signal is 

     ⁄ , measure the amplitudes   ( ) and phases   ( ) 
of the output signals. 

Step 3, Calculating frequency responses. In the     

channel, the frequency response   ( )  of the low-pass filter 

at      ⁄  can be calculated as (16). For the negative fre-

quencies   ̃   ̃    ̃   ⌊ 
 
⌋    ⁄  specified by , the fre-

quency responses are conjugated with   ( )       ⌊ 
 
⌋. 

   ( )    ( ) 
  ( ) (16) 

Step 4, Measurement of DC bias. Let the input of the 

low-pass filter in each channel to be grounded, and the 

measured output voltage is the value of DC bias. 

Step 5, Correction of the modulating matrix. Correct 

the modulating matrix   using the actual frequency respons-

es {  ( )}   
 

 of the low-pass filters as (15).  

Step 6, Recovering Fourier series coefficients. Use the 

corrected modulating matrix   to recover the correct Fourier 

series coefficients of multi-pulse signals as (7). 

 

4. HARDWARE EXPERIMENTS 
 

We assume the pulse shape is Gaussian and  ( ) is formu-
lated as follows: 

  ( )  ∑   
 
(    )

 

   

 

   

 (17) 

Let    ,         ,          . Since    , 

our hardware system require 5 samples at least. Denote by 

{  ̃}   
  the recovered time-delays and {  ̃}   

  the recovered 
amplitudes of multi-pulse signals. The evaluation indicators 

of reconstruction results are listed as follows [8]: 

      
 

 

 
∑(  ̃    )

 

 

   

 (18) 

      
 

 

 
∑(  ̃    )

 

 

   

 (19) 

According to (18) and (19), with the value of      
 or 

     
 smaller, the reconstruction is more precise. We 

change the values of {     }   
  and obtain three groups of 

hardware experiment results, shown in Tab. 1 and Tab. 2. 

 

4.1. Before Channel Calibration 
 

Tab. 1 shows the estimated time-delays and amplitudes and 

the evaluation results of signal reconstruction before chan-

nel calibration. The data proves that, without channel cali-

bration, the non-idealities of low-pass filters lead to failing 

in signal reconstruction. 

Tab. 1. Experiment results before channel calibration 

No. {     }   
   { ̃   ̃ }   

        / 
        

1 
{  3    3} 

{  7    8} 

{  363     9 } 

{  363     9 } 
2.500E-5 6.138E-1 

2 

{       4} 

{  6    8} 
{

  984  
9  9 𝐸   3

} 

{
  984  

 9  9 𝐸   3
} 

3.810E-1 8.446E+27 

3 

{       7} 

{  8    3} 
{

   4   
    8𝐸    

} 

{
   4   

     8E   
} 

3.887E-1 6.542E+30 

 

4.2. After Channel Calibration 
 

After channel calibration, the experiment results are shown 

in Tab. 2. We can conclude that the approach channel cali-

bration improves the precision of signal reconstruction. 

Tab. 2. Experiment results after channel calibration 

No. {     }   
   { ̃   ̃ }   

        / 
        

1 
{  3    3} 

{  7    8} 

{   9       8} 

{  7 3    7 9} 
3.464E-5 6.019E-3 

2 
{       4} 

{  6    8} 

{    3    4 7} 

{         733} 
1.685E-2 2.297E-3 

3 
{       7} 

{  8    3} 

{    9    699} 

{  9 4    337} 
5.468E-3 6.978E-4 

 

5. CONCLUSIONS 
 

In this paper, based on the work by Eldar et al [22], a multi-

channel sampling hardware system is designed to sample 

multi-pulse signals at the rate of innovation. The hardware 

experiments verify that this approach can acquire better es-

timation of time-delays and amplitudes of multi-pulse sig-

nals from the proposed minimal-rate samples. In addition, 

the non-idealities of low-pass filters in the hardware system 

will lead to failing in signal reconstruction. With channel 

calibration, i.e., obtaining the actual frequency responses of 

the filters and correcting the modulating matrix, the signal 

reconstruction will be more precise. 
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