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ABSTRACT

It is known that there exist signals in Paley–Wiener space PW1
π

of bandlimited signals with absolutely integrable Fourier transform,
for which the peak value of the Shannon sampling series diverges
unboundedly. In this paper we analyze the structure of the set of
signals which lead to strong divergence. Strong divergence is closely
linked to the existence of adaptive methods. We prove that there
exists an infinite dimensional closed subspace of PW1

π , all signals
of which, except the zero signal, lead to strong divergence of the
peak value of the Shannon sampling series.

Index Terms— Shannon sampling series, reconstruction pro-
cess, strong divergence, spaceability, Paley–Wiener space

1. INTRODUCTION

Sampling theory plays a fundamental role in modern signal and in-
formation processing, because it is the basis for today’s digital world.
In his seminal work [1] Shannon started this theory. The fundamen-
tal initial result states that the Shannon sampling series

∞∑
k=−∞

f(k)
sin(π(t− k))

π(t− k)
(1)

can be used to reconstruct bandlimited signals f with finite L2-norm
from their samples {f(k)}k∈Z.

Since Shannon’s publication, the reconstruction of bandlimited
signals from their samples has been widely used in numerous appli-
cations and theoretical concepts, and many different sampling the-
orems for various signal spaces have been developed [2–11]. In
this paper we consider the Paley–Wiener space PW1

π of bandlim-
ited signals with absolutely integrable Fourier transform. A precise
definition of this space will be given Section 2.

For N ∈ N, let

(SNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))

π(t− k)
, t ∈ R, (2)

denote the finite Shannon sampling series. A well-known result in
sampling theory is Brown’s theorem, which states that SNf con-
verges locally uniformly to f for all signals f ∈ PW1

π as N tends
to infinity [7, 12, 13].

In many applications it is important to also control the peak
value of SNf . The appropriate measure in this case is the L∞-norm.
A very strong requirement is

lim
N→∞

‖f − SNf‖∞ = 0, (3)

i.e., global uniform convergence. A much weaker requirement is

lim
N→∞

max
t∈[−τ,τ ]

|f(t)− (SNf)(t)| = 0 for all τ > 0

together with

sup
N∈N

‖SNf‖∞ < ∞,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4)

i.e., local uniform convergence in combination with global uniform
boundedness. The control of the peak value ‖SNf‖∞ is equivalent
to the control of the peak approximation error ‖f − SNf‖∞.

For PW1
π , such a control of the peak value ‖SNf‖∞ is not

possible [14], because there exist signals f ∈ PW1
π such that

lim sup
N→∞

‖f − SNf‖∞ = ∞. (5)

The divergence in (5) is in terms of the lim sup. In a sense this
is a weak notion of divergence, because it merely states the exis-
tence of a subsequence {Nn}n∈N of the natural numbers such that
limn→∞‖f − SNnf‖∞ = ∞. This leaves the possibility that there
is a different subsequence {N∗

n}n∈N such that lim supn→∞‖f −
SN∗

n
f‖∞ < ∞ or even limn→∞‖f − SN∗

n
f‖∞ = 0. Note that the

subsequence {N∗
n(f)}n∈N can depend on the signal f . Thus, the

reconstruction process SN∗
n(f) would be adapted to the signal f and

non-linear.

For weakly divergent reconstruction processes the following
question is central: Does there exist a sequence {N∗

n}n∈N ⊂ N,
which can depend on the signal, such that we can control the peak
value, i.e., have supn∈N

‖SN∗
n
f‖∞ < ∞? The answer is negative if

and only if we have

lim
N→∞

‖SNf‖∞ = ∞. (6)

This brings us to the notion of strong divergence. We say that
a sequence {an}n∈N ⊂ R diverges strongly if limn→∞|an| = ∞.
Clearly, this is a stronger statement than lim supn→∞|an| = ∞,
because in case of strong divergence we have limn→∞|aNn | = ∞
for all subsequences {Nn}n∈N of the natural numbers.

In [15] it has been proved that there exists a signal f ∈ PW1
π

such that the peak value of the Shannon sampling series diverges
strongly, i.e., such that (6) is true. This result shows that adaptivity
in the sequence {Nn}n∈N cannot be used to control the peak value
of the Shannon sampling series.

While it is known that there exist signals f ∈ PW1
π such that

(6) is true, little is known about the structure of the set of signals
f ∈ PW1

π that satisfy (6). We will prove that there exists an infinite
dimensional closed subspace of PW1

π , all signals of which, except
the zero signal, satisfy (6), i.e., lead to strong divergence of the peak
value of the Shannon sampling series.
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2. STRUCTURE OF SIGNAL SPACES

In applications, the employed signal sets need to satisfy certain re-
quirements. A very basic requirement is a linear structure, which
ensures that the signal set is closed under addition. Often, it is nec-
essary to introduce, in addition to the linear structure, a distance
measure or norm, to be able to compare two signals. Of particular
importance are Banach spaces, i.e., linear spaces that are complete
with respect to their norm.

Let f̂ denote the Fourier transform of a function f , where f̂ is
to be understood in the distributional sense.

Lp(R), 1 ≤ p < ∞, is the space of all measurable, pth-power
Lebesgue integrable functions on R, with the usual norm ‖ · ‖p, and
L∞(R) the space of all functions for which the essential supremum
norm ‖ · ‖∞ is finite. Lp[−σ, σ], 1 ≤ p < ∞, σ > 0, is the space
of all measurable, pth-power Lebesgue integrable functions on the
interval [−σ, σ].

For σ > 0 and 1 ≤ p ≤ ∞, we denote by PWp
σ the

Paley–Wiener space of signals f with a representation f(z) =
1/(2π)

∫ σ

−σ
g(ω) eizω dω, z ∈ C, for some g ∈ Lp[−σ, σ].

The norm for PWp
σ , 1 ≤ p < ∞, is given by ‖f‖PWp

σ
=

(1/(2π)
∫ σ

−σ
|f̂(ω)|p dω)1/p. Note that PW2

π ⊂ PW1
π .

The Shannon sampling series (1) is non-adaptive and its analysis
leads to a sequence of linear operators {SN}N∈N. The Banach–
Steinhaus theory provides a unified tool for the analysis of sequences
of linear operators. The theory answers when we have (3) as well as
(4). We have (3) for all signals f ∈ PW1

π if and only if we have
(4) for all f ∈ PW1

π . However, the Banach–Steinhaus theory does
not provide a framework for the analysis of adaptive reconstruction
processes, and a unified theory is missing.

For the Shannon sampling series, it was shown in [15] that (4)
does not hold in general, by constructing a signal f ∈ PW1

π with

lim
N→∞

‖SNf‖∞ = ∞. (7)

Here, we are interested in the structure of the set of signals f ∈
PW1

π satisfying (7). In particular, we want to know whether it this
set contains a subset which exhibits a linear structure.

Note that it is significantly more difficult to show a linear struc-
ture in the set of signals with divergent Shannon sampling series,
compared to showing a linear structure in the set of signals with con-
vergent Shannon sampling series. If we have two signals f1 and f2,
for which SNf1 and SNf2 converge, it is clear that the sum of both
signals is a signal for which we have convergence as well. However,
for divergence this is not necessarily true, as can be seen by choos-
ing w1 = f1 + g and w2 = f1 − g, where f1 is any signal with
convergent Shannon sampling series and g any signal with divergent
Shannon sampling series. Obviously, for the sum w1 + w2 = 2f1
we do not have divergence.

Spaceability, which has recently been used for example in [16–
20], is a concept to study the existence of linear structures in gen-
eral sets. A subset S of a Banach space X is said to be spaceable
if S ∪ {0} contains a closed infinite dimensional subspace of X .
In [16] it was shown that the set of continuous nowhere differen-
tiable functions on C[0, 1] is spaceable. The divergence of Fourier
series was analyzed in [19], where it was shown that the set of func-
tions in L1(∂D), whose Fourier series diverges everywhere on ∂D is
spaceable.

3. SPACEABILITY AND STRONG DIVERGENCE FOR
THE SHANNON SAMPLING SERIES

The next theorem, the proof of which will be given in Section 4,
shows that the set of signals with strong divergence of the peak value
of the Shannon sampling series is spaceable.

The spaceability of this set is surprising because in a topological
sense the set cannot be large. This is a crucial difference to weak
divergence which occurs for almost all signals. In this sense adap-
tivity is useful. For further discussions please see [21], which will
be published as part of the STSIP special issue in honor of Claude
Shannon’s centennial.

Theorem 1. The set of signals f ∈ PW1
π satisfying

lim
N→∞

max
t∈R

∣∣∣∣∣
N∑

k=−N

f(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣ = ∞ (8)

is spaceable. That is, there exists an infinite dimensional closed sub-
space DShannon ⊂ PW1

π such that (8) holds for all f ∈ DShannon,
f �≡ 0.

The subspace DShannon, which is constructed in the proof of The-
orem 1, has interesting properties. DShannon has an unconditional ba-
sis, i.e., there exists a sequence of functions {ζn}n∈N ⊂ DShannon

such that for all f ∈ DShannon there exists a unique sequence of coef-
ficients {an(f)}n∈N such that

lim
N→∞

∥∥∥∥∥f −
N∑

n=1

an(f)ζn

∥∥∥∥∥
PW1

π

= 0.

The coefficient functionals f 
→ an(f), n ∈ N, are linear and con-
tinuous functionals on DShannon. A further special property of the
space DShannon is expressed by the following theorem, which is a
consequence of Paley’s theorem [22, p. 104] and the open mapping
theorem [23, p. 100].

Theorem 2. There exist two constants C1, C2 > 0 such that

C1

( ∞∑
n=1

|an(f)|2
) 1

2

≤ ‖f‖PW1
π
≤ C2

( ∞∑
n=1

|an(f)|2
) 1

2

(9)

for all f ∈ DShannon.

Theorem 2 shows that DShannon is isomorphic to the Hilbert space
l2, or equivalently, PW2

π . Moreover, if we equip the space DShannon

with the norm ‖f‖DShannon =
(∑∞

n=1|an(f)|2
)1/2

then it becomes
a Hilbert space, and {ζn}n∈N is a Riesz basis for the Hilbert space
(DShannon, ‖ · ‖DShannon).

4. PROOF OF THEOREM 1

Proof. The problem can be reduced to showing that the set of signals

R =

{
f ∈ PW1

π : lim
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)

N + 1
2
− k

∣∣∣∣∣ = ∞
}

is spaceable. Due to space constraints we omit this problem reduc-
tion step. Next, we show that R is spaceable. For N ∈ N we define
the functions

wN (t) =
∞∑

k=−∞
wN (k)

sin(π(t− k))

π(t− k)
, t ∈ R,
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where wN (k) is given by

wN (k) =

⎧⎪⎨
⎪⎩
1, |k| ≤ N,

1− |k|−N
N

, N < |k| < 2N,

0, |k| ≥ 2N.

Note that we have wN ∈ PW1
π and ‖wN‖PW1

π
< 3 for all N ∈ N

[24]. Further, for l ∈ N let Nl = 22
2(l+1)

. Based on wN , we define
for n ∈ N the functions

φn(t) =

∞∑
l=1

1

ln−12l+1
wNl(t), t ∈ R.

Note that φn(k) > 0 for all k, n ∈ N. Moreover, for arbitrary l̂ ∈ N

and k > Nl̂ we have wNr (k) = 0 for all r < l̂, and it follows that

φn+m(k) =

∞∑
l=l̂

1

ln+m−12l+1
wNl(k)

≤ 1

l̂m

∞∑
l=l̂

1

ln−12l+1
wNl(k) =

1

l̂m
φn(k) (10)

for all m,n ∈ N.
Next, we show that the set {φn}n∈N is finitely linearly indepen-

dent, i.e., that every finite subset is linearly independent. Assume
that {φn}n∈N is not finitely linearly independent. Then there exist
a finite set {φnr}Rr=1 and numbers {cr}Rr=1, all different from zero,
such that

c1φn1(t) =
R∑

r=2

crφnr (t), t ∈ R.

Without loss of generally we can assume that n1 < n2 < · · · < nR.

Let l̂ ∈ N be arbitrary and k ∈ (Nl̂, Nl̂+1]. Then we have

|c1|φn1(k) ≤
R∑

r=2

|cr|φnr (k) ≤
1

l̂

R∑
r=2

|cr|φn1(k)

according to (10), which in turn implies that |c1| ≤ 1

l̂

∑R
r=2|cr|

because φn1(k) > 0. Since l̂ was arbitrary, it follows that c1 = 0,
which is a contradiction. Hence, it follows that {φn}n∈N is finitely
linearly independent.

Let n ∈ N be arbitrary but fixed. For each N ∈ N there exists

exactly one l̂ such that N ∈ (Nl̂, Nl̂+1], and we have

N∑
k=0

φn(k)

N + 1
2
− k

≥ 1

(l̂ + 1)n−12l̂+2

N∑
k=0

wN
l̂+1

(k)

N + 1
2
− k

=
1

(l̂ + 1)n−12l̂+2

N∑
k=0

1

N + 1
2
− k

>
log(2N + 3)

(l̂ + 1)n−12l̂+2

>
log(Nl̂)

(l̂ + 1)n−12l̂+2
=

22(l̂+1)

(l̂ + 1)n−12l̂+2
log(2)

=
2l̂

(l̂ + 1)n−1
log(2),

which shows that

lim
N→∞

N∑
k=M

φn(k)

N + 1
2
− k

= ∞ (11)

for all M ∈ N.
For n ∈ N, let

qn(t) =
sin(π(t− 2n))

π(t− 2n)
, t ∈ R.

According to Paley’s theorem [22, p. 104], {qn}n∈N is a basic se-
quence in PW1

π . Let {q∗n}n∈N denote the unique sequence of coef-
ficient functionals. It is easy to see that ‖q∗n‖ = 1, n ∈ N. Further,
for n ∈ N, we define

ξn = qn +
1

2n+23
φn.

It follows that
∞∑

n=1

‖q∗n‖‖ξn − qn‖PW1
π
=

∞∑
n=1

1

2n+23
‖φn‖PW1

π

≤
∞∑

n=1

1

2n+23

∞∑
l=1

‖wNl‖PW1
π

ln−12l+1

<
∞∑

n=1

1

2n+2

∞∑
l=1

1

2l+1
=

1

8
< 1.

Hence, {ξn}n∈N is a basic sequence for PW1
π that is equivalent to

{qn}n∈N [25, p. 46]. Let D be the closure in the PW1
π-norm of the

set {
M∑

n=1

anξn : an ∈ R,M ∈ N

}
.

D is the desired infinite dimensional closed subspace of R∪ {0}. It
remains to show that

lim
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)

N + 1
2
− k

∣∣∣∣∣ = ∞

for all f ∈ D.
We have f ∈ D if and only if

∑∞
n=1|an|2 < ∞ [22, p. 104].

Further, for every f ∈ D there exists a unique l2-sequence {an}n∈N

such that

f =
∞∑

n=1

anξn.

Let f ∈ D, f �≡ 0, be arbitrary but fixed. Then f has the expansion

f(t) =

∞∑
n=1

anξn(t), t ∈ R.

Let n0 denote the smallest natural number such that an0 �= 0. We
have

f(t) =
∞∑

n=n0

anqn(t)

︸ ︷︷ ︸
=G(t)

+

∞∑
n=n0

an

2n+23
φn(t)

︸ ︷︷ ︸
=H(t)

, t ∈ R.

Since
∑∞

n=1|an|2 < ∞, it follows that G ∈ PW2
π , and we obtain∣∣∣∣∣

N∑
k=−N

G(k)

N + 1
2
− k

∣∣∣∣∣≤
( ∞∑

k=−∞
|G(k)|2

) 1
2
(

N∑
k=−N

1

(N+ 1
2
−k)2

) 1
2

≤
( ∞∑

k=−∞
|G(k)|2

) 1
2
( ∞∑

k=0

1

(k + 1
2
)2

) 1
2

= ‖G‖PW2
π

π√
2
= C3,
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where C3 is a constant that is independent of N . Hence, we have∣∣∣∣∣
N∑

k=−N

f(k)

N + 1
2
− k

∣∣∣∣∣ ≥
∣∣∣∣∣

N∑
k=−N

H(k)

N + 1
2
− k

∣∣∣∣∣−
∣∣∣∣∣

N∑
k=−N

G(k)

N + 1
2
− k

∣∣∣∣∣
≥
∣∣∣∣∣

N∑
k=−N

H(k)

N + 1
2
− k

∣∣∣∣∣− C3.

For M,N ∈ N, M < N we have∣∣∣∣∣
N∑

k=−N

H(k)

N + 1
2
− k

∣∣∣∣∣ ≥
∣∣∣∣∣

N∑
k=M

H(k)

N + 1
2
− k

∣∣∣∣∣−
∣∣∣∣∣

−M∑
k=−N

H(k)

N + 1
2
− k

∣∣∣∣∣
−
∣∣∣∣∣

M∑
k=−M

H(k)

N + 1
2
− k

∣∣∣∣∣ . (12)

The second expression on the right hand side of (12) can be bounded
from above by∣∣∣∣∣

−M∑
k=−N

H(k)

N + 1
2
− k

∣∣∣∣∣ ≤ ‖H‖PW1
π

N∑
k=M

1

N + 1
2
+ k

< ‖H‖PW1
π

N∑
k=1

1

N + 1
2

= ‖H‖PW1
π

N

N + 1
2

< ‖H‖PW1
π
.

And for the third expression on the right hand side of (12) we have∣∣∣∣∣
M∑

k=−M

H(k)

N + 1
2
− k

∣∣∣∣∣ ≤ ‖H‖PW1
π

∣∣∣∣∣
M∑

k=−M

1

N + 1
2
− k

∣∣∣∣∣
< (2M + 1)‖H‖PW1

π
.

Hence, for M,N ∈ N, M < N , it follows that∣∣∣∣∣
N∑

k=−N

f(k)

N + 1
2
− k

∣∣∣∣∣ ≥
∣∣∣∣∣

N∑
k=M

H(k)

N + 1
2
− k

∣∣∣∣∣
− (2M + 2)‖H‖PW1

π
− C3, (13)

which shows that it suffices to analyze

N∑
k=M

H(k)

N + 1
2
− k

in the following. For M,N ∈ N, M < N , we have

N∑
k=M

H(k)

N + 1
2
− k

=

∣∣∣∣∣
N∑

k=M

an0φn0(k)

2n0+23(N + 1
2
− k)

+
∞∑

n=n0+1

an

2n+23

N∑
k=M

φn(k)

N + 1
2
− k

∣∣∣∣∣
≥ |an0 |

2n0+23

N∑
k=M

φn0(k)

N + 1
2
− k

−
∞∑

n=n0+1

|an|
2n+23

N∑
k=M

φn(k)

N + 1
2
− k

=
|an0 |
2n0+23

N∑
k=M

φn0(k)

N + 1
2
− k

−
∞∑

ν=1

|an0+ν |
2n0+2+ν3

N∑
k=M

φn0+ν(k)

N + 1
2
− k

.

Let l̃ be the smallest natural number such that

|an0 | −
1

l̃

∞∑
ν=1

|an0+ν |
2ν

>
|an0 |
2

. (14)

For m ∈ N and all k ≥ Nl̃ we have

φn0+m(k) ≤ 1

l̃m
φn0(k),

according to (10). Let M ≥ Nl̃ and N > M . Then it follows that

N∑
k=M

H(k)

N + 1
2
− k

≥ |an0 |
2n0+23

N∑
k=M

φn0(k)

N + 1
2
− k

−
∞∑

ν=1

|an0+ν |
2n0+2+ν3

N∑
k=M

φn0(k)

l̃ν(N + 1
2
− k)

=

(
N∑

k=M

φn0(k)

N + 1
2
− k

)(
|an0 |
2n0+23

−
∞∑

ν=1

|an0+ν |
2n0+2+ν l̃ν3

)

>

(
N∑

k=M

φn0(k)

N + 1
2
− k

)(
|an0 |
2n0+23

− 1

l̃

∞∑
ν=1

|an0+ν |
2n0+2+ν3

)

>

(
N∑

k=M

φn0(k)

N + 1
2
− k

)
|an0 |
2n0+33

,

where we used (14) in the last inequality. Using (11) we see that

lim
N→∞

N∑
k=M

H(k)

N + 1
2
− k

= ∞

for all M ≥ Nl̃, which, according to (13) implies that

lim
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)

N + 1
2
− k

∣∣∣∣∣ = ∞. (15)

Since f ∈ D was arbitrary, we have (15) for all f ∈ D. According
to our argumentation at the beginning of the proof, this implies that
we have

lim
N→∞

max
t∈R

∣∣∣∣∣
N∑

k=−N

f(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣ = ∞

for all f ∈ DShannon, where DShannon is an infinite dimensional closed
subspace that is computed from D according to DShannon = TD, with
T being an isomorphic isomorphism.

5. RELATION TO PRIOR WORK

In this paper we studied the Shannon sampling series for the Paley–
Wiener space PW1

π and analyzed the structure of the set of signals
for which the peak value of the Shannon sampling series diverges
strongly.

Some preliminary results have been achieved in [26], where the
authors proved the lineability of this set. In the present paper we
provide a strengthening of the result in [26], by showing that there
exists an infinite dimensional closed subspace of PW1

π such that the
peak value of the Shannon sampling series diverges strongly for all
signals, except the zero signal, from this subspace.

This result is interesting because it shows that the divergence of
these reconstruction processes is not a rare phenomenon occurring
only for few signals, but rather a frequent event for infinitely many
signals that form an infinitely dimensional vector space. The vector
space property implies that any linear combination of signals from
this vector space, that is not the zero signal, is again a signal that
creates divergence.
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