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ABSTRACT

Recently it has been shown that specific classes of non-
bandlimited signals known as signals with finite rate of
innovation (FRI) can be perfectly reconstructed by using
appropriate sampling kernels and reconstruction schemes.
The knowledge of the model order (i.e. the rate of innova-
tion) is essential for correct reconstruction. In view of this,
we devise an algorithm which can robustly identify the rate of
innovation prior to the signal reconstruction in different noise
levels and this extends the current scheme to a universal one
that works with signals with unknown rate of innovation and
using arbitrary kernels. We use the ‘guaranteed performance’
criterion to assess the performance and show a success rate
close to 100% for SNR up to 10dB.

Index Terms— finite rate of innovation, model order,
sampling theory

1. INTRODUCTION

x(t) h(t) = ϕ(−t/T )
T

yn

Fig. 1: A typical sampling set-up.

Finite Rate of Innovation (FRI) theory has demonstrated
that it is possible to sample and perfectly reconstruct classes
of continuous-time non-bandlimited signals [1, 2, 3]. Such
signals are characterized by the fact that they are completely
specified by a finite number of parameter per unit of time.
For example a stream of pulses has a rate of innovation 2K if
there are at most K pulses per unit of time. This is due to the
fact that, given the knowledge of the pulse shape, only the K
locations and K amplitudes of the pulses need to be retrieved
in order to reconstruct the signal exactly.

FRI normally requires the acquisition setting to be as the
one shown in Fig. 1, where the function h(t) is the unit im-
pulse response of the acquisition device. Under this model
the samples are given by yn = 〈x(t), ϕ(t/T − n)〉, where
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ϕ(t) = h(−tT ) is called the sampling kernel. The original
FRI sampling theory has then been extended to multidimen-
sional signals [4, 5, 6], alternative acquisition settings [7, 8, 9]
and has also been applied in many domains (e.g. [10, 11]).

Typically, in noisy settings, estimation of FRI signals is
performed using methods based around the SVD decomposi-
tion [12, 13, 14]. Examples include Cadzow iterative algo-
rithm [15, 16] and matrix pencil methods [17]. Moreover, it
has been observed [2, 18] that the performance of these algo-
rithms for estimation of locations of Diracs achieves optimal
results given by Cramér-Rao bound up to certain signal-to-
noise ratios (SNR). The estimation departs from Cramér-Rao
bound when SNR falls below a threshold due to the increas-
ing probability of erroneous “outlier” estimates. In [18] we
have explained the breakdown event by subspace swap (see
also [19]) and our conjecture is that as long as there is no sub-
space swap event, the reconstruction algorithm is guaranteed
to follow the performance given by the Cramér-Rao bound.

Traditional FRI schemes are not universal in that the sam-
pling kernel needs to satisfy certain properties that depend on
the rate of innovation of x(t), and the rate of innovation needs
to be known. For example, if the incoming signal is a stream
of Diracs with at most K Diracs per unit of time, the rate of
innovation is ρ = 2K and the kernel is designed so that any
stream of Diracs with ρ ≤ 2K can be reconstructed. How-
ever normally the same kernel cannot reconstruct signals with
ρ > 2K even if we increase the sampling rate. Moreover,
estimation of ρ can be problematic in noisy settings, even
though effective methods are now starting to appear [20, 21].

In this paper, we use the results in [22] to make the ac-
quisition device independent of K, and we further extend the
scheme by proposing a model selection algorithm, i.e. estima-
tion ofK, to achieve a universal scheme for sampling streams
of Diracs with unknown rate of innovation and using arbitrary
kernels. Our method does not require the knowledge of the
statistic of the noise nor the variance of the noise. We use
guaranteed no-breakdown performance to evaluate our pro-
posed universal scheme. The core message is that if the min-
imum distance of the Diracs is above the value provided by
the no-breakdown condition, then the correct K should be es-
timated. If it is below, the right selection K̃ should be below
K. The algorithm is effective in noisy scenarios where we
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show that it is more robust than the previous version [23] and
achieve a success rate close to 100% for SNR up to 10dB.

The paper is organised as follows: in Section 2 we pro-
vide an overview of the theory of sampling FRI signals. In
Section 3, we overview the guaranteed performance results of
the FRI algorithm when using exponential reproducing ker-
nel. In Section 4, we explain our proposed algorithm to enable
universal sampling of signals with arbitrary FRI and explain
how to use the guaranteed performance criterion to analyze
its performance. Simulation results are then shown in Section
5. Finally we conclude in Section 6.

2. OVERVIEW OF FRI THEORY

2.1. Exact Framework

Consider the sampling set-up of Fig. 1. It has been shown in
[3] that, when ϕ(t) is an exponential reproducing function,
perfect recovery of x(t) from the samples yn = 〈x(t), ϕ(t/T−
n)〉 is possible. We say that ϕ(t) is an exponential reproduc-
ing function of order P when, together with its integer shifts,
it is able to reproduce P + 1 complex exponentials:∑

n∈Z
cm,nϕ(t− n) = eαmt, m = 0, 1, . . . , P (1)

for proper coefficients cm,n.
Under this assumption, FRI algorithms compute the fol-

lowing weighted sums sm =
∑
n cm,nyn, m = 0, 1, ..., P ,

where the weights cm,n are those in (1) that reproduce eαmt.
When αm is purely imaginary, it can be shown that sm is ex-
actly the Fourier transform of x(t) at ω = ωm denoted by
x̂(αm).

When x(t) is a specific class of signals with FRI and αm
is chosen to be of the form αm = α0 + mλ, it is possible to
establish a one-to-one mapping between x̂(αm) and x(t). For
example, if x(t) is a stream of K Diracs located at tk, that is

x(t) =

K∑
k=1

akδ(t− tk), (2)

then the locations {tk}Kk=1 of the Diracs can be found
from {x̂(αm)}Mm=0 by Prony’s method (annihilating filter
method [1, 3]), and then the amplitudes {ak}Kk=1 are re-
trieved by solving a linear system of equations. For retrieval
of FRI signals in the presence of noise, where we assume
the samples yn are corrupted by white Gaussian noise with
variance σ2

y , Cadzow method [15] and matrix pencil [17] are
proven to be effective. They are SVD-based methods and
operate by splitting the measurement space into an estimated
signal-subspace and an orthogonal-subspace and they work
well when the noise has no significant effect on the signal
subspace.

This formulation is not universal in that that it requires the
acquisition device to behave like an exponential reproducing

function and its order must be equal to or larger than the rate
of innovation of the signal with FRI, specifically, for this ex-
ample P ≥ 2K − 1. This means that if the incoming signal
has more than K Diracs, e.g. K ′ > K, it cannot be recon-
structed with this kernel and this even whenN ≥ 2K ′. More-
over, without knowing the order K in the parametric model
(2) the reconstruction is not possible.

2.2. Approximate Framework

Recently, the FRI sampling theory has been extended so that
any acquisition device can be used [22].

Consider an arbitrary kernel ϕ(t). We want to find a lin-
ear combination of ϕ(t) with its shifted versions that provides
the best approximation to a specific exponential, more specif-
ically, find coefficients cn such that

∑
n∈Z cnϕ(t−n) ≈ eαt.

This approximation is exact only when the kernel ϕ(t) satis-
fies the generalized Strang-Fix condition. For any other func-
tion, we use the coefficients cn = ϕ̂(α)−1 eαn so that the
approximation error is minimised.

We note that in the approximate framework N samples
can give us N approximate exponentials and this directly re-
lates the highest rate of innovation it can recover to the sam-
pling rate rather than the order of the kernel. Hence any acqui-
sition device is always usable for signals with arbitrary rate of
innovation below the sampling rate. Although theoreticallyN
samples are enough for recovering N/2 Diracs, in reality we
require a slightly higher number of samples per unit of time
since the Fourier coefficients are all approximated. Later on
in Sec. 4 we propose an algorithm for identifying the rate of
innovation and this will extend the approximate framework
to a universal one that works with any arbitrary acquisition
device and arbitrarily unknown number of Diracs.

3. GUARANTEED PERFORMANCE IN FRI

In both the exact or the arbitrary sampling framework, the per-
formance of SVD-based estimation algorithms for robust FRI
reconstruction achieves optimal results given by Cramér-Rao
bound up to certain signal-to-noise ratio (SNR) and breaks
down for smaller SNRs.

In [18], we have explained the breakdown event by sub-
space swap, which refers to the situation where due to noise
the orthogonal subspace mixes with the signal subspace mak-
ing the retrieval of the signal unreliable and this has been
broadly recognised as the reason of performance breakdown
in SVD-based parameter estimation algorithms [19]. In our
work we have described a worst subspace swap scenario, and
from there we have worked out the necessary condition for
subspace swap to happen. In this way, we derived, for expo-
nential reproducing kernels at which noise level the absence
of subspace swap is guaranteed, i.e. no breakdown is guaran-
teed.
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Fig. 2: Necessary condition for subspace swap in different
sampling settings

Specifically, when there is one Dirac the breakdown
PSNR=10 log10

a2

σ2
y

is related to the order P of the kernel and
the necessary condition for breakdown is shown in Fig. 2(a)
by solid curve. When there are two Diracs with same ampli-
tudes, the breakdown PSNR is related to the sampling period
T , the distance ∆t between the two Diracs, the frequency
interval λ of αm and the order of the kernel P . The necessary
condition is shown in Fig. 2(b). Breakdown may happen for
settings in the area below the curve and it is guaranteed no-
breakdown will happen for the area above the curve. In other
words, FRI achieves the Cramér-Rao bounds in settings above
the curve. Note that the results in Fig. 2 is optimistic when
it comes to an arbitrary sampling kernel setting, since only
approximate reproduction of exponentials can be achieved in
this case. In this setting, we estimate the breakdown condi-
tion empirically. The following explains how to measure the
breakdown points.
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Fig. 3: Scatterplot of locations retrieved in 20dB noise using
FRI reconstruction algorithm (Cadzow) compared to 3 times
the standard deviation given by Cramér-Rao bounds.

In Fig. 3 we plot the estimated locations and the Cramér-
Rao bounds for the situation where there are two Diracs with
same amplitude sampled with the 5th order B-spline at the
rate 1/T = 31 in SNR=20dB noise, where SNR(dB) is de-
fined as 10 log ‖y‖

2

Nσ2
y

. It shows that the location reconstruc-
tion algorithm in general achieves the Cramér-Rao bounds
for distance d beyond some specific critical value. So we can
say Dirac distance> d is the no-breakdown condition when
using the 5th order B-spline as the sampling kernel at sam-
pling rate of 31Hz in noise level of SNR=20dB. When the no-
breakdown condition is not satisfied, subspace swap may hap-
pen and these two Diracs becomes indistinguishable. The FRI
reconstruction algorithm reconstructs them as one tall Dirac

situated in between the true Diracs and one Dirac far away
from the true Diracs with negligible amplitude. In this case,
the more reasonable reconstruction should be neglecting the
Dirac with negligible amplitude.

We can use no-breakdown condition to evaluate our pro-
posed algorithm for model order selection (finding K in (2)).
We aim for a model order selection algorithm that can cor-
rectly identify the number of Diracs when guaranteed no-
breakdown condition is satisfied and that can automatically
make the right selection of number of Diracs which should
be smaller than K when subspace swap happens and adjacent
Diracs cannot be resolved.

4. RATE OF INNOVATION IDENTIFICATION
ALGORITHM

In this section we use the approximate framework and pro-
pose a novel method to identify the rate of innovation and
this results in a universal scheme for sampling signals with
unknown rate of innovation and using arbitrary kernels.

The idea of the algorithm is as follows. Given cN (c > 1)
samples yn of the input stream of Diracs x(t) taken by an
arbitrary kernel ϕ(t), we are able to obtain cN approximated
Fourier coefficients x̂(αm),m = 1, . . . , cN using the method
described in Sec. 2.2. From these Fourier coefficients we es-
timate at most N/2 Diracs.

We first assume that the number of the Diracs is p = 1
and we retrieve the location and amplitude of the Dirac in the
parametric model

∑p
k=1 akδ(t − tk). Next we resynthesize

the samples to obtain ỹn(p) and compute εp = ‖ỹn(p)− yn‖
the error between the resynthesized samples and yn. Then we
repeat this procedure but with assumption that p is 2, 3, up to
N/2.

We expect that the error on the samples will first de-
crease gradually when the number of Diracs p we assumed
approaches the true number K. When we further increase p,
the errors will either rise slightly or further decrease but at
a much slower rate. The turning point will be our estimated
number of Diracs. Note that to recognize the turning point we
do not need to have p going all the way to N/2. In fact, the
iteration can be stopped when εp increases and we denote this
point by Kstop. We recognize the turning point by a scoring
system which gives scores to all the numbers p = 1, . . . ,Kstop
based on resynthesis error εp on samples, first derivative of εp
and second derivative of εp. More specifically, the score Sp
for p = 1, . . . ,Kstop is as follows:

Sp = ε′′p − 2|ε′p| − 2εp − (ε1 − ε2)p. (3)

The term ε′′ in Sp rewards p which is a sudden turning point
in εp, and −2|ε′p| penalizes p where the speed of decreasing
in resynthesis error is comparatively high. −εp penalizes p
with large resynthesis error. At last, −(εp + (ε1 − ε2)p) pe-
nalizes large p that cannot reach the expected decreasing rate
of resynthesis error. The estimated number of Diracs with
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highest score will be our chosen number of Diracs. Note that
this scoring system decides the number of Diracs by choosing
the p with highest possibility among all instead of an absolute
numerical criterion, it can operate regardless of the number
of Diracs, signal to noise ratio, amplitudes of Diracs and does
not require knowledge of the statistics of the noise.

Once the number of Diracs K is determined, the input
signal x(t) can be recovered using the parametric model with
correct order. We summarize the algorithm as follows:

Algorithm 1: Reconstruction of a stream of unknown
number of Diracs x(t) from its cN samples {yn}cNn=1.

1 Obtain cN Fourier coefficients x̂(αm) from {yn}cNn=1;
2 p = 0;
3 while assumed number of Diracs p < N/2 and

errDecreaseDetector do
4 p = p+ 1;
5 Estimate location(s) t̂k and amplitude(s) âk of p

Diracs from yn (with Cadzow or matrix pencil);
6 Resynthesize the samples

ỹn(p) = 〈
∑p
k=1 âkδ(t− t̂k), ϕ(t− n)〉;

7 Compute the error εp = ‖ỹn(p)− yn‖;
8 if p > 1 then
9 errDecreaseDetector = (εp − εp−1) ≤ 0;

10 Kstop = p;
11 end
12 end
13 Compute the scores Sp = ε′′p − 2|ε′p| − 2εp− (ε1− ε2)p

for p = 1, . . . ,Kstop;
14 Choose for K the number of Diracs p corresponding to

the largest Sp. Then x̃(t) is the reconstruction
corresponding to the model

∑K
k=1 âkδ(t− t̂k).

5. SIMULATIONS

In this part, we want to test the performance of the proposed
algorithm. We want to show that our algorithm can identify
the number of Diracs when the sampling setting is in the no-
breakdown region, and when it is not the algorithm is able to
choose the most reasonable number of Diracs. In the example
of Fig. 4, there are 8 Diracs sampled at 1/T = 31, in which
two close-by Diracs have a distance satisfying the 20dB no-
breakdown condition but not the 10dB no-breakdown condi-
tion. We notice that in 20dB noise the number of Diracs is
identified correctly and all the 8 Diracs are accurately recon-
structed. In 10dB noise subspace swap happens, FRI recon-
struction methods are not able to resolve the two Diracs no
matter what the number of Diracs we assumes, but K = 7
results in a better reconstruction. Our proposed algorithm
makes the right selection of the number of Diracs when there
is subspace swap event.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1
0
1
2
3 A stream of 8 Diracs

5 10 15 20 25 30
0
5

10 number of samples: 31, SNR: 20dB
noiseless samples
noisy samples

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1
0
1
2
3the number of Diracs is unknown, our estimated number of Diracs is 8

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1
0
1
2
3 if the original number of Diracs of 8 is known

original Diracs
reconstructed Diracs

(a) SNR=20dB, no subspace swap happens and we identified the
number of Diracs correctly.
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(b) SNR=10dB, two close-by Diracs are not resolvable when sub-
space swap happens. The best choice is 7 Diracs instead of 8 and
we identified it.

Fig. 4: Universal sampling of a stream of unknown number
of Diracs using 5th order B-spline in the presence of noise.

In the following we do a more systematic test where we
generate a stream of 4 Diracs with random locations and ran-
dom amplitudes between 1 to 1.5, satisfying the minimum
distance required by the no-breakdown condition. We recon-
struct the unknown number of Diracs from 51 samples taken
with the kernel of 5th order B-spline. We have 10000 realisa-
tions for each noise level.

The percentage of correct estimations for different level
of noise is shown in Table 1. The result is compared with our
previous version of identification algorithm which is slower
and only based on the second derivative of resynthesis er-
rors [23]. It shows that our proposed algorithm is much more
robust than the previous version and can identify the number
of Diracs with high success rate even in high level of noise.

Table 1: The percentage of correct identification of the num-
ber (4) of Diracs from 51 samples in different noise level.
10000 realisations for each noise level.

SNR Inf. 20dB 15dB 10dB 5dB
alg. in [23] 100% 99.92% 97.38% 89.32% 63.55%
proposed alg. 100% 100% 100% 99.99% 95.72%

6. CONCLUSIONS

We have shown how to sample FRI signals with arbitrary ker-
nels and that a novel algorithm can identify the model order
accurately prior to reconstruction. Simulation results have
confirmed the effectiveness of the proposed method.
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