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ABSTRACT

This paper proposes an improved formulation of sparsity-assisted
signal smoothing (SASS). The purpose of SASS is to filter/denoise
a signal that has jump discontinuities in its derivative (of some des-
ignated order) but is otherwise smooth. SASS unifies conventional
low-pass filtering and total variation denoising. The SASS algorithm
depends on the formulation, in terms of banded Toeplitz matrices, of
a zero-phase recursive discrete-time filter as applied to finite-length
data. The improved formulation presented in this paper avoids the
unwanted end-point transient artifacts which sometimes occur in the
original version. For illustration, SASS is applied to ECG signal
denoising.

Index Terms— low-pass filter, total variation, sparse signal, de-
noising, electrocardiogram.

1. INTRODUCTION

Numerous signals can be modeled as the sum of (1) a low-frequency
signal and (2) a signal with a sparse K-order derivative. For ex-
ample, an electrocardiogram (ECG) time-series can be modeled this
way. A signal of this kind has jump discontinuities in its derivative
(of order K—1) but is otherwise smooth. For the purpose of suppress-
ing additive white Gaussian noise, conventional linear time-invariant
(LTI) filters are not suitable for such a signal; LTI filtering tends to
over smooth discontinuities (e.g., ‘corners’ of a signal). Similarly,
(generalized) total variation (TV) denoising [29], which is intended
for the denoising of piecewise constant (polynomial) signals, is also
not suitable for such a signal; TV denoising tends to introduce stair-
case artifacts.

Sparsity-assisted signal smoothing (SASS) [31] was developed
for the purpose of filtering a signal which has discontinuities in its
derivative (of some designated order) but is otherwise smooth. SASS
combines and unifies conventional LTI low-pass filtering and (gener-
alized) TV denoising. Hence, SASS is useful for a wider class of sig-
nals than either LTI low-pass filtering or TV denoising is alone. The
SASS algorithm formulates the denoising problem as a sparse de-
convolution problem, and in turn, as an optimization problem com-
prising a data fidelity term and a sparse regularization term. The
SASS problem formulation is expressed in terms of banded Toeplitz
matrices. Furthermore, the computationally efficient implementa-
tion of SASS relies on fast solvers for banded systems of linear equa-
tions.

In this paper, we introduce an improved version of SASS.!
Specifically, we improve the formulation, in terms of banded
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Toeplitz matrices, of a class of recursive discrete-time filters as
applied to finite-length data [31, 34]. This formulation is central
to SASS because it allows linear low-pass filtering and nonlinear
sparsity-based TV denoising to be combined in a single cost function
to be minimized. However, the original formulation [31] gives rise
to unwanted transient artifacts at the start and end of finite-length
data. Avoiding those artifacts requires ad-hoc preprocessing of the
input data which limits the applicability of SASS, especially for the
filtering of short input data. The new matrix formulation presented
in Sec. 2 below does not give rise to transient artifacts, hence no
ad-hoc preprocessing is needed and SASS can be effectively applied
to both short and long finite-length data.

1.1. Relation to Prior Work

Several prior works have studied the signal model considered here,
i.e., a signal comprising the sum of low-frequency signal and a
sparse-derivative signal [11, 16, 26, 32, 33, 34]. The most closely
related relevant work is by Gholami and Hosseini [16] who combine
Tikhonov (quadratic) regularization and TV denoising. In contrast
to [16], SASS is formulated explicitly in terms of an LTI low-pass
filter to which it reduces as a special case, and hence can be under-
stood in terms of its frequency response; whereas, the method of
[16] is formulated in terms of Tikhonov regularization. In addition,
SASS is formulated to allow a higher-order sparse derivative and
exploits a factorization (see (30) below) without which the esti-
mated sparse-derivative signal component tends to be unbounded
in the higher-order case, which hinders the usability of the result
and impedes numerical stability of optimization algorithms. We
note that Ref. [16] considers also the problems of deconvolution and
compressed sensing, which are not considered here.

As SASS can be considered an extension of TV denoising, we
note that several extensions of TV denoising have been proposed
[3, 21, 23, 24]. In contrast to these methods, SASS can also be con-
sidered an extension of LTI filtering. SASS unifies TV denoising
and LTI filtering, and hence conforms to and builds upon elementary
signal processing.

Wavelet-based denoising is suitable for the type of piecewise-
smooth signal considered here. But simple wavelet-domain denois-
ing leads to artifacts; hence, wavelet-based signal models have been
developed to explicitly account for singularities (i.e., discontinuities
in the derivative of a signal), such as: hidden Markov tree [9], sin-
gularity detection [20, 22], wavelet footprints [12, 35], TV-wavelet
[13, 14], and singularity approximation [4, 5]. Although SASS is
less general than wavelet-based methods (it does not have a mul-
tiscale property), it is much simpler than wavelet-based methods
because it does not involve wavelet-domain singularity modeling.
SASS preserves sparse singularities in an otherwise smooth signal
without inducing wavelet-like artifacts.
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2. FILTERS AS MATRICES

Given finite-length sequences p,, and g, we define banded Toeplitz
matrices P and Q to have the form

P2 p1 Po
P2 p1 po
P= (D
L P2 P1 Po
[ @1 qo
2 @ Qo
Q= N N : 2
L q2 41 Qo

By the relation between Toeplitz matrices and convolution, we have
[Px]n = (p*x)(n) ©)

where x is vector containing values x(n) and P is appropriately
indexed. Hence, the matrix P corresponds to an LTI system with

transfer function
P(z)=> paz " )
n

and frequency response P(e/). The matrix Q corresponds likewise
to an LTI system.
Consider the cost function

J(x) = 1Q(y = x)|13 + o[ Px][3 ®)
with « > 0. The function J is minimized by

x=(Q'Q+aPP)'Q'Qy (6)

which constitutes a linear filter with matrix

H=(Q'Q+PP)'Q'Q. (7)
We define
A=Q'Q+oP™P ®)
where we note that A is banded. We thus write H as
H=A"'Q'Q ©)

Note that H is not banded, even though A and Q are. Fortunately,

the efficient implementation of (6) requires only A and Q be banded.
The matrix H is approximately Toeplitz; thus, it represents (ap-

proximately) an LTI system, the frequency response of which is

Qe
Q) + al P(ei)

H(e") = (10)

Note that H (¢/) is zero-phase (i.e., real-valued). The transfer func-
tion is given by

Q)Q(1/2) |
Q(IQ(1/2) + aP()P(1/2)

Expression (6) implements a zero-phase recursive discrete-
time filter for finite-length data. It can be considered a type
of forward-backward filtering (e.g., £iltfilt in Matlab or
scipy.signal.filtfilt in Python). An advantage of (6)
is that transient effects at the start and end of the finite-length signal

H(z) = (11)

are intrinsically avoided. This is because each row of the convolu-
tion matrices P and Q in (1) and (2) contains a full impulse response
(not truncated). (This is akin to the valid option in the Matlab
conv function or the Python numpy . convolve function.) There-
fore, using expression (6), it is not necessary to specify internal filter
states or perform symmetric extensions, which are usual ways to
avoid transient end-point artifacts in forward-backward filtering.

The implementation of (6) requires the solution of a system of
linear equations. Fast memory-efficient solvers for banded systems
can be used for this purpose [28, Sect 2.4].

2.1. High-pass Filter

If H is a zero-phase low-pass filter, then G = I — H is a zero-phase
high-pass filter with transfer function

aP(z)P(1/z)

= emanm rereram P
Using (8) and (9), the filter matrices for GG are given by
G=I-H (13)
=I1-A'Q'Q (14)
=A"'(A-Q'Q) (15)
=aA'PP (16)

where we used (8) to simplify (15).

2.2. Butterworth Low-pass Filter

Some classical filters have transfer functions of the form (11). From
(11), note that

P(Zo) =0 = H(Zo) =1 17)
Q(z0) =0 = H(z)=0. (18)

In this paper, we set
P(z) = (1—z1)* (19)
Qz) = (1+z7"" (20)

for a positive integer d, leading to P(1) = 0 and Q(—1) = 0, i.e.,
H(1) = 1and H(—1) = 0. Hence, the frequency response of the
filter H has unity gain at w = 0 and a null at w = 7. Further-
more, the frequency response is flat at these two points (its first few
derivatives are zero, depending on d).

With P(z) and Q(z) given by (19) and (20), the filter H in (11)
is a discrete-time Butterworth filter [27]. The frequency response of
H is given by

cos?(w/2)

jwy
H(e™) = cos24(w/2) + asin®(w/2) ey

We can set « so the frequency response has a designated cut-off
frequency we.. Setting H (¢’*¢) = 0.5 and solving for « yields

a =1/ tan’"(w./2). (22)

The zero-phase Butterworth filter, implemented for finite-length sig-
nals using (6), exactly preserves polynomial input signals up to de-
gree 2d — 1 (with no transients at signal end-points). This is due to
the flatness of H(z) at z = 1. The Savitzky-Golay filter [30] also
has this polynomial approximation property.
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Fig. 1: Zero-phase Butterworth filter for finite-length data. (The
dashed line is the old formulation which has end-point transients.)

With P(z) and Q(z) given by (19) and (20), the matrices P and
Q consist of binomial coefficients. For example, when d = 3, the
matrices are given by

13 3 1
1 3 3 1
Q= ) . 23)
13 3 1
-1 3 -3 1
-1 3 -3 1
P= . ‘ . (24)
-1 3 -3 1

These matrices are of size (N — d) x N where N denotes the length
of the vector to which the matrices are applied.

Figure 1 illustrates the zero-phase Butterworth filter for d = 3
and w, = 0.1w. To illustrate the absence of transient artifacts at
end-points of a finite-length signal, the output signals due to six in-
put signals are shown, where the signal length is N = 100. The out-
put signals are computed using (6). The filter preserves polynomial
input signals up to degree 5 (i.e., 2d — 1 = 5). For example, Fig. 1
shows that the filter preserves input polynomial signals of degree 0
and 1 (i.e., constant and line). The figure also shows the original
formulation (in dashed line-style) which exhibits unwanted transient
artifacts at the signal end-points [31].

2.3. Factorization

We define D as the matrix representing K -order discrete-time dif-
ference, e.g., when K = 2 we have

D= . . . (25)

The matrix D corresponds to the LTI transfer function
D(z)=(1—-z""%, (26)

The matrix D is of size (N — K) x N.
If K < d, then P(z) in (19) can be expressed as

P(z)=(1—z"1) (27)
= Pi(2) D(z) (28)

where we define
Pi(z) = (1 -2z H" k. (29)

Correspondingly, we write the matrix P as the product
P=P;D (30)

where P; is the Toeplitz matrix corresponding to P (z). The matrix
P, is of size (N — d) x (N — K). We will use relation (30) to
simplify the cost function below.

3. SPARSITY-ASSISTED SIGNAL SMOOTHING
We assume the signal x to be estimated can be expressed as
z(n) = x1(n) +x2(n), n €Z 31

where signal z; has a sparse K-order derivative and z2 is a low-
frequency signal. We assume the signal x is corrupted by additive
white Gaussian noise (AWGN),

y(n) =z(n)+w(n), n€z (32)

where w is the noise. We assume that if the sparse-derivative com-
ponent x1 were absent, then low-pass filtering would be sufficient
to estimate x> (since x2 is a low-frequency signal by assumption).
Hence, if x1 were known, we may estimate z2 by subtracting x;
from the noisy data y and low-pass filtering, i.e.,

&2 = LPF{y — 41} (33)

where LPF represents a zero-phase low-pass filter. So, we propose
to estimate x as

& =a1+LPF{y — &1} (34)
where 2 is an estimate of x;. Since the low-pass filter is linear, we
can write

IS

=& + LPF{y} — LPF{&:} (35)
= LPF{y} + HPF{Z:} (36)
where HPF represents the zero-phase high-pass filter | — LPF where

| is the identity operator. Using low-pass filter H in (9) and corre-
sponding high-pass filter G in (16), we have

x=A"'Q'Qy + AP Pxy (37)
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where x; is a signal with sparse K-order derivative, i.e., Dx; is
sparse. Let us use P(z) and G(z) with parameter d with K < d.
Then P = P D from (30), so we write (37) as

x=A"'Q"Qy + aA PP, Dx;. (38)
Since Dx; is sparse, we write the signal model as
x=A"'Q'Qy + A 'P"Piu (39)

where u is sparse (and is to be determined/optimized).
Hence, a suitable cost function to determine u is

J(u) = &

= 5ly —AT'Q'Qy — aAT'PTP1u; + Aul,

where the ¢; norm is used to induce sparsity of u. The quadratic
data fidelity term corresponds to the additive white Gaussian noise
assumption. Using (16), we have

y-AT'Q'Qy = aA™'P Py, (40)

ie.,
y — LPF{y} = HPF{y}, (41)
so the cost function to be minimized can be written as

2
(e _
J(w) = TIATRT By - Prw)lZ + Alul,  @2)

To clarify/summarize the matrix sizes: If y € RY, then

P, € RV-IxX(N=K) (43)
PGR(Nfd)xN. (44)

u GRNfK,

A e RV*Y

The minimization of the cost function J in (42) is the standard
£1-norm sparse least squares problem arising in basis pursuit de-
noising, compressed sensing [6], etc. It can be solved by the iter-
ative shrinkage/thresholding algorithm (ISTA) [10, 15] (an instance
of forward-backward splitting [7, 8]), accelerated variants of ISTA
(FISTA [2], FASTA [18], etc.), alternating direction method of mul-
tipliers (ADMM) [1, 17], iterative reweighted least-squares (IRLS)
[19], etc. Therefore, we omit details about how to perform the mini-
mization of the cost function J. We note only that all matrices A, P,
and P are banded; thus, algorithms can be implemented with high
computational efficiency, as described in [31].

A key point in the above formulation is that, even though we
model Dx; as sparse, the matrix D does not appear in the ¢;-norm
penalty term of the cost function (42). Instead of penalizing Dx;,
we penalize u. This simplifies the problem and its algorithmic so-
lution. This simplification is possible because D is a factor of P as
related in (30), i.e., D(z) is a factor of P(z).

4. EXAMPLE

This example uses sparsity-assisted signal smoothing (SASS) to de-
noise the noisy ECG signal shown in Fig. 2(a). We simulate the ECG
signal using ECGSYN [25] and add white Gaussian noise. The ECG
signal exhibits abrupt changes in its slope. So, it seems reasonable to
model the ECG signal as a low-frequency signal plus a signal with a
sparse second-order derivative (i.e., with jump discontinuities in its
first-order derivative). Hence, we set K = 2 in SASS.

For SASS, the low-pass filter H must also be specified. We
set d = 2 which satisfies K < d as required. We set the cut-off
frequency to w. = 0.067 (i.e., fo = 0.03 in normalized frequency

(a) Noisy data (c = 0.20)

0 100 200 300 400 500
(b) Low-pass filtering (d = 2, fc = 0.030)
RMSE = 0.117

0 100 200 300 400 500

(c) SASS (K=2,A=1.52,d =2, fc = 0.030)
RMSE = 0.066

0 100 200 300 400 500
(d) Sparse signal u
021
O A A A I
-02¢
0 100 200 300 400 500
Time (n)

Fig. 2: Denoising of a simulated ECG signal. (The dashed line is the
old formulation which has end-point transient artifacts.)

units). This leads to o = 12524.52 using (22). The parameters d
and « define the zero-phase Butterworth filters H and G, i.e., the
matrices P, Q, and A. As Fig. 2(b) shows, this low-pass filter by
itself substantially suppresses the noise and smooths the signal. But
it severely distorts the sharp peaks of the ECG waveform.

The output of SASS, shown in Fig. 2(c), accurately preserves
the sharp peaks of the ECG waveform. Indeed, the first-order deriva-
tive of the SASS-denoised signal has jump discontinities in several
places. The sparse signal u, computed as part of the method, is
shown in Fig. 2(d). It is the non-zero values of v that produce the
jump discontinuities of the first-order derivative of the denoised sig-
nal. The denoised signal is given by (39) where u is obtained by
minimizing the cost function (42). We have set the value of the pa-
rameter A using the method suggested in [31]. As Fig. 2 shows, the
proposed reformulation of SASS avoids the occurrence of unwanted
end-point transient artifacts.

5. CONCLUSION

Sparsity-assisted signal smoothing (SASS) depends on a banded ma-
trix formulation of recursive filtering of finite-length input signals.
This paper presents a formulation that avoids the unwanted transient
artifacts at signal end-points in the original formulation [31, 34].
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