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ABSTRACT
We propose an eigenvalue shrinkage method with a modified Cheby-
shev polynomial approximation (CPA). The eigenvalue shrinkage
has been used in many fields of signal and image processing. How-
ever, the shrinkage takes enormous computation time especially
in the case that a matrix constructed from a signal or image be-
comes very large, i.e., eigendecomposition can hardly be performed.
The CPA is an approximation method of the shrinkage function
that avoids the eigendecomposition of the matrix. Unfortunately,
it is known that the CPA generates Gibbs phenomenon around
points of discontinuity for approximating an ideal response. The
Chebyshev-Jackson polynomial approximation (CJPA) will allevi-
ate the problem, but the transition bandwidth becomes wide, which
is an undesired characteristic for some applications. In this paper,
we propose an eigenvalue shrinkage method with the reduced Gibbs
phenomenon by modifying the CPA using the weighted least squares
approach. Our method can reduce the error as well as the CJPA.
Furthermore, it yields the narrow transition band. Some experi-
mental results on spectral clustering validate the effectiveness of the
method.

Index Terms— Chebyshev polynomial approximation, weighted
least squares, Gibbs phenomenon

1. INTRODUCTION

An eigenvalue shrinkage method has been used in many research
fields of signal and image processing. For example, this approach
is very useful for improving the smoothing performance of image
filtering [1, 2] such as bilateral filter [3–6] and non-local means [7].
The eigenvalue shrinkage is also applied to a spectral graph filtering
in graph signal processing (GSP) [8–16].

It is well known that the eigenvalue shrinkage takes enormous
computation time because a matrix constructed from a signal often
becomes very large, i.e., eigendecomposition (EVD) can hardly be
performed [17, 18]. Note that the eigenvalue shrinkage can actually
be carried out by computing neither eigenvectors nor eigenvalues.
Chebyshev polynomial approximation (CPA) [9, 19, 20] is effective
method to achieve the approximate eigenvalue shrinkage without us-
ing EVD, which drastically reduces the computation time. In our
previous work, the above CPA-based eigenvalue shrinkage was fur-
ther extended to accelerate a singular value shrinkage, which is often
used in a matrix rank minimization [21, 22].

This work was supported in part by MEXT Tenure-Track Promotion Pro-
gram and JSPS Grants-in-Aid for JSPS fellows (15J08568).

The CPA is effective for approximating a smooth function, how-
ever, approximating an ideal function with discontinuities and/or
sharp transition gives truncation errors so called Gibbs phenomenon
[23] even in the higher-order approximations (see Fig. 1(a)). This is
because the CPA is defined as the weighted sum of sinusoidal waves.
To reduce the error, the Chebyshev-Jackson polynomial approxi-
mation (CJPA) [24–28] has recently been used in the GSP-related
field. The approximation errors are reduced by using the CJPA with
a drawback of a wide transition band (see Fig. 1(b)). As a result, the
difference between the approximated response and the ideal one be-
comes large, which affects the performance of practical applications.

In this paper, we propose an eigenvalue shrinkage method using
a modified CPA which reduces the Gibbs phenomenon without af-
fecting the transition bandwidth. A weighted least squares (WLS)
approach is a key tool to achieve it. In [29], the WLS method was
applied to the CPA to efficiently design linear phase FIR filters. It
enables us to flexibly determine the area of the filter response where
we would like to reduce the errors. For our method, the eigenvalue
shrinkage method is modified by using the weighted CPA1 (WCPA)
in order to reduce the Gibbs phenomenon. It leads to the matrix form
of the WCPA, which is the main contribution in this paper. Among
practical applications, we apply our method to a fast spectral cluster-
ing method proposed in [30] for example. We replace the polynomial
approximation part of [30], which uses the CJPA, with our method.
Some experimental results show that our method can efficiently ap-
proximate an ideal response which leads to superior performances
than the other methods.

This paper is organized as follows. Section 2 describes some
notations and definitions. Section 3 presents the WCPA. First, the
WCPA for a real-valued function is introduced, and then it is formu-
lated to its matrix form, which is a main contribution in this paper.
In Section 4, our method is applied to the spectral clustering, and
some experimental results are shown. Finally, Section 5 concludes
the paper.

2. NOTATIONS AND PRELIMINARIES

2.1. Notations

Bold-face capital and small letters indicate a matrix and a vector, re-
spectively. Superscript ·> is the transpose of a matrix and a vector,
and superscript ·−1 is the inverse of a non-singular matrix. The ma-
trices I and O are the identity and null matrices, respectively. The

1This method is the CPA modified by using the WLS.
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`p norm for p ≥ 1 is defined as ‖x‖p :=(
∑n
i=1 |xi|

p)
1
p (∀x∈Rn).

2.2. Chebyshev Polynomial Approximation of Matrix Form

Let A ∈ Rn×n be a full rank matrix and A = PΛP−1 be its
EVD, where P ∈ Rn×n is the matrix composed of eigenvectors
and Λ = diag(λ1, . . . , λi, . . . , λn) is the diagonal matrix with the
corresponding eigenvalues. In this paper, A is assumed to be a real
symmetric matrix. Additionally, we define that the eigenvalues are
bounded between 0 and λmax, where λmax>1. The eigenvalues of
A are processed with the functionH(·) as

H(A) := Pdiag
(
h(λ1), . . . , h(λn)

)
P−1, (1)

where h(x) is the filter kernel defined in x ∈ [0, λmax]. In this
subsection, we present the approximated solution of (1) using the
CPA.

The CPA of the matrix form gives an approximated solution of
the functionH(·) by using truncated Chebyshev series as

Ĥ(A) :=
1

2
ĉ0I +

α−1∑
k=1

ĉkΨk(Â), (2)

where ĉk and Ψk(Â) are Chebyshev coefficients and Chebyshev
polynomials, respectively, which are defined later. Additionally, α is
an arbitrary approximation order. In (2), Â is the eigenvalue-shifted
matrix given by

Â :=
2

λmax
A− I, (3)

whose eigenvalues are obviously within [−1, 1]. Here, the ith eigen-
value of Â is represented as λ̂i. Thanks to (3), the kth order Cheby-
shev polynomial of Â is defined as

Ψk(Â) := Ψk
(

2
λmax

A− I
)

= PΨk
(

2
λmax

Λ− I
)

P−1

= Pdiag(cos kθ1, . . . , cos kθn)P−1

= Pdiag(ψk(λ̂1), . . . , ψk(λ̂n))P−1 (4)

where θi := arccos
(

2
λmax

λi − 1
)

andψk(λ̂i) := cos
(
k arccos(λ̂i)

)
.

The Chebyshev polynomials are obtained using the following recur-
rence relation:

Ψk(Â) = 2ÂΨk−1(Â)−Ψk−2(Â),

Ψ0(Â) = I, Ψ1(Â) = Â.
(5)

Then, the Chebyshev coefficients ĉk are derived by using the orthog-
onality of the cosine functions as follows:

ĉk =
2

α

α∑
l=1

cos(kθl)h

(
λmax

2
(cos θl + 1)

)
, (6)

where θl :=
π(l− 1

2
)

α
. The term h

(
λmax

2
(cos θl + 1)

)
returns the

shifted range back to the original range [0, λmax]. From (6), Ĥ(A)

can also be represented using ĥ(λi) as

Ĥ(A) = P diag
(
ĥ(λ1), . . . , ĥ(λn)

)
P−1. (7)

The function Ĥ(·), which is referred to as the CPA-based eigenvalue
shrinkage, results in the approximated function H(·). The CPA-
based eigenvalue shrinkage actually computes neither eigenvalues
nor eigenvectors explicitly.
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Fig. 1. Examples of responses approximated from an ideal filter by
using the CPA and the CJPA with the 15-th order approximation. In
this figures, the black-dotted lines show ideal filter responses. (a)
Response of CPA. (b) Response of CJPA.

2.3. Chebyshev-Jackson Polynomial Approximation

When the function h(·) in (1) is an ideal filter kernel, the function ap-
proximated by using the CPA shows the Gibbs phenomenon around
the points of discontinuity, as shown in Fig. 1(a). The CJPA [24–28]
reduces the errors by adding damping factors dk,α to (2) as

HJ(A) :=
1

2
ĉ0I +

α−1∑
k=1

dk,αĉkΨk(Â), (8)

where

dk,α :=

α−k−1∑
i=0

ai,αak+i,α, (9)

in which
ai,α :=

Ui(cos(
π
α+1

))√∑α−1
j=0 Uj(cos(

π
α+1

))
. (10)

The operator Ui(·) is the Chebyshev polynomials of the second kind
defined as

Ui(x) := ∂
∂x

ψk+1(x)

k+1

= sin((k+1) arccos(x))
sin(arccos(x))

. (11)

As shown in Fig. 1(b), the CJPA reduces the Gibbs phenomenon but
the CJPA also tends to have a large transition bandwidth.

3. WEIGHTED CHEBYSHEV POLYNOMIAL
APPROXIMATION

The WCPA is a method that resolves the problems in the CPA and
CJPA. We firstly introduce the WCPA for real-valued functions, and
then it is extended to the matrix form for eigenvalue shrinkage.

3.1. Weighted Least Squares

First, we introduce the WLS. Let ha(x) be the approximated re-
sponse of h(x), and w(x) be a weight function. The input x is
bounded between −1 and 1. The weighted squared error by using
these notations is defined as

ε :=

L−1∑
l=0

w(cos θl)(h(cos θl)− ha(cos θl))
2, (12)
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where L is an arbitrary integer (L ≥ α), and the approximated re-
sponse is defined as

ha(x) :=

α−1∑
k=0

ak cos(k arccos(x)), (13)

in which ak is a coefficient. When setting the derivative of ε to zero,
i.e., ∂ε

∂ar
= 0 , we obtain

L−1∑
l=0

w(cos θl)h(cos θl) cos(rθl)

=

L−1∑
l=0

α−1∑
k=0

w(cos θl) cos(rθl) cos(kθl)ak.

(14)

where r ∈ [0, α − 1] is constant. For simplicity, the terms of (14)
are denoted as

s1(r) :=

L−1∑
l=0

w(cos θl)h(cos θl) cos(rθl),

s2(r, kc) :=

L−1∑
l=0

w(cos θl) cos(rθl) cos(kcθl),

(15)

where kc is constant within [0, α − 1]. Let a := [a0, . . . , ak
, . . . , aα−1]> and s1 := [s1(0), . . . , s1(r), . . . ,
s1(α − 1)]>. Additionally, the matrix of s2(r, kc) is defined as
S2 := [s2(r, kc)]α×α, where s2(r, kc) is the component of the
matrix S2 ∈ Rα×α in the r-th row and kc-th column. The matrix
S2 is a symmetric matrix from (15). According to the above, the
coefficients a can be calculated as a = S−1

2 s1.

3.2. Relation Between Orthogonal Functions and WLS

In this paper, the inner product between arbitrary functions is defined
as

〈f, g〉 :=

L−1∑
l=0

w(cos θl)f(cos θl)g(cos θl). (16)

The cost function in (12) is rewritten by using (16) as

ε = 〈h− ha, h− ha〉. (17)

Let φk(x) be orthogonal functions for the inner product (16)
with w(x), and this is represented as a polynomial form given by

φk(x) :=

k∑
t=0

bk,t cost(arccos(x)), (18)

where bk,t is a coefficient for the polynomial. Additionally, its or-
thonormal function is defined as φ̄k(x) := φk(x)

〈φk,φk〉1/2
. Here, the

approximated response ha(x) is redefined by using φ̄k(x):

ha(cos θl) :=

α−1∑
k=0

ḡkφ̄k(cos θl), (19)

where ḡk is a weight. According to the above definition, the equa-
tions in (15) can also be redefined as

s1(r) :=

L−1∑
l=0

w(cos θl)h(cos θl)φ̄r(cos θl),

s2(r, kc) :=

L−1∑
l=0

w(cos θl)φ̄r(cos θl)φ̄kc(cos θl).

(20)

Since φ̄k(x) is an orthonormal function, s2(k1, k2) = 1 if k1 = k2
and s2(k1, k2) = 0 otherwise. Therefore, the coefficient ḡk can
simply be calculated as

ḡk = s1(k). (21)

Equation (21) means that all φ̄k(x)’s are required in order to obtain
the coefficients ḡk. To obtain φ̄k(x) efficiently, we use the idea of
the recurrence relation in the CPA.

3.3. Weighted Chebyshev Polynomial Approximation [29]

In [29], the following definitions are derived by satisfying the or-
thonormality of the functions φ̄k(x), i.e., s2(k1, k2) = 1 if k1 = k2,
s2(k1, k2) = 0 otherwise. Its details are omitted in this paper due to
limitation of the space.

The recurrence relation is defined as

φk+1(cos θl) :=
cos θl − γk

βk
φk(cos θl)−

βk
βk−1

φk−1(cos θl),

φ−1(cos θl) := 0, φ0(cos θl) := 1,

(22)

where

βk :=

{
L−1∑
l=0

w(cos θl)φ
2
k(cos θl)

} 1
2

,

γk :=
1

β2
k

L−1∑
l=0

w(cos θl) cos θlφ
2
k(cos θl).

(23)

The coefficient w(cos θl) controls some “don’t care” points, e.g.,
w(cos θl) = 0 in transition bands and w(cos θl) = 1 otherwise.
Note that the orthonormal function φ̄k(x) is given by φk(x)

βk
since

βk = 〈φk, φk〉1/2 is considered as a norm from (23). According to
the fact, the weighted Chebyshev series are given by

ha(cos θl) :=

α−1∑
k=0

ḡk
βk
φk(cos θl). (24)

Additonally, the weighted Chebyshev coefficient ḡk can be calcu-
lated from (20) and (21) as

ḡk =
1

βk

L−1∑
l=0

w(cos θl)h(cos θl)φk(cos θl). (25)

3.4. Weighted Chebyshev Polynomial Approximation for Ma-
trix Form

Here, the matrix form of the WCPA is derived. The weighted
Chebyshev polynomials for a matrix are defined as Φk(Â) :=

XAdiag(φk(λ̂1), . . . , φk(λ̂i), . . . , φk(λ̂n))X−1
A , whose diagonal

matrix is represented as D(φk(λ̂i)) in this subsection. Additionally,
initial sets are defined as Φ−1(Â) := O and Φ0(Â) := I. From the
above, the (k + 1)-th polynomial Φk+1(Â) can be calculated as

Φk+1(Â) := XAD(φk+1(λ̂i))X
−1
A

= XAD
(
λ̂i−γk
βk

φk(λ̂i)− βk
βk−1

φk−1(λ̂i)
)
X−1

A

= 1
βk

(Â− γkI)Φk(Â)− βk
βk−1

Φk−1(Â), (26)
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Fig. 2. Examples of approximated responses by using the WCPA
with the 15th order approximation. (a) w(x) = 1 if x < 0.95,
w(x) = 100 if x > 1.05 and w(x) = 0 otherwise. (b) w(x) = 100
if x < 0.95, w(x) = 1 if x > 1.05 and w(x) = 0 otherwise.

where βk and γk have already been derived in (23). By using the
above recurrence relation, the weighted Chebyshev series for a ma-
trix is defined as

Ha(A) :=
∑α−1
k=0

ĝk
βk

Φk(Â), (27)

where the Chebyshev coefficient ĝk can be calculated as

ĝk =
1

βk

L−1∑
l=0

w
(λmax

2
(cos θl+1)

)
h
(λmax

2
(cos θl+1)

)
φk(cos θl).

(28)
According to the series, we can manipulate the eigenvalues of a ma-
trix in the sense of the WLS.

As shown in Fig. 2, our method smoothes the part of the Gibbs
phenomenon which we would like to reduce intensively. The advan-
tage of our method is to keep the narrower transition bandwidth than
that of the CJPA instead of removing all the errors.

4. EXPERIMENTS

4.1. Application to Spectral Clustering

Our method is applied to the fast spectral clustering method pro-
posed in [30]. Here, we only describe how the polynomial approxi-
mation methods are applied to the spectral clustering method due to
limitation of the space.

Let Vi ∈ Rm×n be the ith data of an arbitrary data set. The
entire data are rearranged into a matrix V ∈ Rmn×K . Let G :=
{V, E ,W} be an undirected graph with the set of vertices V , the
set of edges E , and the adjacency matrix W ∈ RK×K which en-
codes the weights of edges. The adjacency matrix is defined as
W := [wij ]K×K , where wij is the weight on the edge. The edge
weight wij is calculated from Vi and Vj , whose details are indi-
cated in [30]. Then, the diagonal degree matrix M is defined as
M := diag(mi), where mi :=

∑
j wij . From the above defini-

tions, the graph Laplacian matrix is defined as L := M− 1
2 (M −

W)M− 1
2 .

When the data set has k clusters, the k smallest eigenvalues of
L are remained as is when performing the spectral clustering as

h(λLi ) =

{
1 if λLi ≤ λLk ,
0 otherwise,

(29)

where λLi is the ith eigenvalue of the matrix L. The matrix whose
eigenvalues are shrunk by (29) is defined as H(L). In [30], the

Table 1. Experimental Results (Average of Ten Executions): ARSI
and Computation Time (s).

Approx. order Evaluation index CPA CJPA WCPA

10th order ARSI 0.926 0.616 0.938
Computation time 10.38 11.72 10.13

20th order ARSI 0.945 0.929 0.950
Computation time 17.87 18.24 17.88

30th order ARSI 0.949 0.937 0.949
Computation time 24.41 24.38 24.42

clustering is derived by using the matrix H(L)R, where the matrix
R ∈ RK×p (p� K) is a random matrix whose components are in-
dependent random Gaussian variables. Our method and other poly-
nomial approximation methods used the same eigenvalue shrinkage
function shown in (29).

4.2. Experimental Results

The application was implemented with MATLAB R2015b and run
on a 4-GHz Intel Core i7 processor with 32GB RAM. All condition
was determined in the code provided by the authors of [30]2. In our
method, the weight function w(x) in (28) is defined as w(x) = 1
if x ≤ λLk − 0.05, w(x) = 100 if x ≥ λLk + 0.05 and w(x) =
0 otherwise. The k-th eigenvalue λLk is estimated as described in
[30]. The value L in (23) and (28) was defined as L = 1000. The
approximation precision of these methods was compared by using
the 10th, 20th, and 30th order approximation whose values were
used for α in (27). Additionally, the clustering performance was
indicated by using the adjusted rand similarity index (ARSI) [31]
between the ground truth and the obtained partitions.

Table 1 shows the experimental results regarding the approxima-
tion precision and computation time3. The clustering performance
by using our method is better than the others even in the low approx-
imation order. Especially, the performance of our method is much
better than that of the CJPA. This is because the proposed method
can use lower order approximation than the conventional method in
order to present the comparable performance.

5. CONCLUSION

In this paper, we proposed an eigenvalue shrinkage method with the
alleviated Gibbs phenomenon by using the weighted least squares
method. The CPA can be redefined by using the weighted least
squares method for reducing the Gibbs phenomenon. Thanks to this,
the Gibbs phenomenon can be selectively attenuated while keeping
the narrow transition band. We applied the WCPA to the eigenvalue
shrinkage by formulating its matrix form to utilize the advantage.
Our eigenvalue shrinkage enables us to efficiently approximate an
ideal function in the sense of the WLS. Our method can be applied
to many applications in various research fields including signal and
image processing and machine learning. Among practical applica-
tions, our method was applied to the spectral clustering for example.
The proposed method presented better clustering performances than
those of the conventional methods even if we used the low order
approximation.

2Available at http://cscbox.gforge.inria.fr/
3The computation time was measured in the entire spectral clustering al-

gorithms.
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