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ABSTRACT

This paper considers time-domain beamforming in MIMO
convolutive systems, using the classical LU-based (Gauss
elimination) polynomial matrix decomposition. As the pre-
and postfilters are not paraunitary, the output signal-to-noise
ratio is degraded compared to QR-based beamforming. We
investigate the role of the postfilter on the noise enhancement
and propose a simple and efficient solution. We show that a
simple normalisation of the postfilter, using row balancing,
is sufficient to significantly improve the conditioning of the
system and thereby, the performance of the system. With
the resulting performance increase, the LU-based polynomial
matrix decomposition for MIMO beamforming becomes
competitive as compared to its QR-based counterparts, in
terms of bit error rate, for medium input SNR.

Index Terms— Polynomial Matrix Decomposition, MIMO
Beamforming

1. INTRODUCTION

Beamforming is a well established bandwidth and power
efficient method of communication over multipath wireless
channels, using multiple transmit and receive antennas [1].
In a multipath propagation environment, several delayed
and scaled versions of the transmitted signal arrive at the
receiver [2]. This produces intersymbol interference (ISI),
which is well known to degrade the bandwidth and power
efficiency. The signal recorded at each receive antenna is
also the superposition of the outputs of the subchannels orig-
inating from the different transmit antennas. This causes
co-channel interference (CCI), which is another severe limi-
tation in addition to ISI. Beamforming can mitigate the CCIL.

For a system of p transmit antennas and ¢ receive anten-
nas, the p x ¢ wideband MIMO channel can be represented
by its matrix-valued transfer function H (z). Consider the fac-
torisation of H(z) as in

H(z) = U(2)D(2)V (2), ¢))
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where U(z) and V(z) are square matrices of sizes p and ¢
respectively. If the inverses of V' (z) and U(z), provided they
exist, are inserted into the transmission chain respectively
as pre- and post-filters, then the original MIMO channel be-
comes equivalent to D(z). Diagonalization of H(z), that is
when D(z) in (1) is diagonal, therefore reduces the MIMO
wideband channel to N = min(p, ¢) independent single in-
put single output (SISO) subchannels, thereby cancelling the
CCI. Such decomposition is most commonly achieved using
the popular Singular Value Decomposition (SVD) method,
leading to para-unitary factors U(z) and V' (z).

From a practical point of view, it is natural to assume
that the MIMO channel has finite duration. Then, H(z) can
be modeled as a polynomial matrix. As a consequence, one
seeks for (1) a polynomial matrix decomposition, meaning
that all three factors are also polynomial matrices, with D(z)
diagonal [3], [4]. Unfortunately, polynomial matrix SVD
does not exist in general, although the rational counterpart
is always feasible using, e.g., the classical QR decomposi-
tion [5]. Since the presence of poles in the decomposition can
cause instability, a common solution is to consider, instead, a
Laurent polynomial matrix decomposition. Several Laurent
polynomial matrix SVD algorithms, based on the QR factori-
sation [7], [8], [9] or Jacobi method [10] are now available.
These are often considered in an OFDM context in order to
mitigate both CCI and ISI. Alternatively, the beamforming
can be performed in the frequency domain, on the constant
channel matrix of each OFDM subcarrier [6]. We mention
that the decomposition in (1) is difficult because the factors
V(z) and U(z) are required to be paraunitary. The parau-
nitaryness assures that the power distributions of the signal
and noise remain unaltered after pre- and post-filtering, re-
spectively. But, this requirement can be released, since the
diagonalisation of H(z) is the main issue. Then, the decom-
position (1) is always feasible with polynomial factors, since
it is well known that in a Bezout ring [11], any matrix can be
triangularised by a unimodular transformation. In this regard,
a MIMO beamforming scheme based on a combination of the
classical Smith canonical form and LU (Gauss elimination)
was presented recently in [12], [13]. The resulting factors
U(z) and V(z) are unimodular. The loss of the paraunitary
property for the post-filter induces a serious limitation for this
beamforming scheme. Indeed, the simulation in [12], [13]
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show that the noise power is enhanced after the post-filtering
stage. However, the LU-based beamforming presents at the
same time many interesting advantages over its QR-based
counterparts. First, it is not necessary to consider Laurent
matrix polynomial models which introduce artificial delays
just for technical reasons. Also, compared to e.g. [7], the
decomposition algorithm in [13], called UU-decomposition
(Unimodular-Upper), is effective and does not require any
iteration: The algorithm ends up after a finite and prescribed
number of steps, with a matrix D(z) which is exactly diag-
onal. Moreover, it was shown in [13] that except for some
unprobable original MIMO channel, all but the last result-
ing independent SISO subchannels reduce to simple additive
noise channels. In addition to completely cancelling the CCI,
this decomposition also inheritly avoids the ISI problem.
Because of its very interesting features, the LU-based fac-
torisation is a good candidate for time domain beamforming,
provided the noise enhacement problem is solved. This is
precisely the aim of the present paper.

The rest of the paper is organized as follows. Section 2 is
devoted to the problem description and investigates the causes
of the noise enhancement. A solution is presented in section
3. Finally, simulation results showing that the proposed solu-
tion significantly reduces the noise enhancement are given in
section 4.

2. PROBLEM DESCRIPTION

The UU-decomposition of H(z) € CP* follows the same
steps as the classical LU factorization. However, a Bezout
equation is solved in each step, in order to reduce the pivot
element to a constant. Assume without any loss of generality
that p > q. We first obtain

H(z) =U(2)R(2), 2

where U(z) and R(z) are respectively p X p-unimodular and
pXxgq-upper triangular polynomial matrices. Recall that a poly-
nomial matrix is said to be unimodular if it is 1) invertible
and 2) the inverse is also a polynomial matrix. Next, the same
decomposition is applied to obtain R(2)T = V(2)TD(2)7,
where the superscript 7 denotes the transpose operator and
where V(z) is g x g-unimodular as U(z) in (2). Then, the
factorization (1) follows, where

3

with D(z) ¢ x g-diagonal and polynomial and where 0;,; de-
notes the zero matrix of size ¢ X j. Let us now consider the
communication system through H(z),

y(2) = H(z)z(2) + n(z), @

where n(z) stands for the z-transform of a sample realisation
of the noise corruption n € CP. In the beamforming scheme

using (1), the pre-filtered version, Z(z) = V(z)lx(z), is
transmitted instead of the original input signal . The corre-
sponding channel’s output y(z) = H(z)x(z) + n(z) is then
post-filtered as in y(z) = U(z)'y(2), which yields the final
equivalent system

¥(2) = D(2)x(2) + U(2) 'n(2) 2 D(2)x(z) + n(z).

2.1. Noise power amplification

Assuming a spatial-temporal unitary white noise n, the output
noise power after post-filtering reads as

27

Tr [U(e*) U (e™)] " dw,

4)

where E(-) denotes the mathematical expectation, Tr(-) the
trace operator and the superscript *, the transpose-conjugation.
The noise component is thus amplified whenever the Lo-norm
of the post-filter is high. Fig. 1 displays the performance (in
terms of bit error-rate vs SNR) of the LU-based beamform-
ing for four different MIMO channels, each corrupted by a
unit-variance spatial-temporal white noise. The performance
significantly degrades as the noise amplification increases.
Of course, this performance loss cannot be explained only by
the noise power enhancement since the output signal y also
undergoes the same post-filtering.
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Fig. 1. Effect of the BER comparison for various values of
the matrix postcoder’s power.

2.2. Matrix conditioning

We observe that the post-filtering operation mentioned above
can be seen as the resolution of the linear perturbed system
U(2)y(z) = H(z)x(z) + n(z), with the error term n(z). As
it is well known from classical perturbation analysis [14], the
relative error between the computed output y(z) and the ideal
noise-free solution is bounded by:

15(2) - D)z (2)]l2
ECECE

[m(2)]l2
1H ()2 (2)]]2”

#(U(2)) (6)
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Fig. 2. BER comparison for various values of the matrix post-
coder’s conditioning values.

27
where we set [[w()[2 2 ;/ Efw(e™)*w(e)]dw for

0
the usual Lo norm for a random vector-valued signal w and

where k(U (z)) = |U(2)|||U(2)~t| is the condition number
of the unimodular matrix U(z) with respect to the norm de-
fined in (5). Note that x(U(z)) does not depend on z. In the
sequel, we write k(U).

If the post-filter U(2) is ill-conditioned, i.e. x(U) > 1,
then the inequality (6) shows that the noise-to-signal ratio af-
ter post-filtering (left hand side) may be very high as com-
pared to before post-filtering (factor of x(U)). Fig. 2 shows
the bit error rate versus SNR for four different systems. The
performance is significantly affected when x(U) increases.

3. POST-FILTER SELECTION

Given a noisy input-output communication system (4), the de-
composition (1) using paraunitary pre- and post-filters is op-
timal in the sense of minimum relative output error bound.
This is a direct consequence of (6) and the well-known prop-
erty that x(U) = 1 for U(z) paraunitary. In the present
section, we propose a simple solution to improve the prop-
erties of the post-filter in a beamforming scheme using the
UU-decomposition. The aim is to obtain a post-filter with
properties as close as possible to those mentioned above for
paraunitary post-filters.

To begin, assume that the preceding post-filter U (z) ! is
now replaced by some polynomial matrix S(z) of appropriate
size. In the sequel, we set W(z) = S(z)U(z). Then, the
channel’s output signal, after post-filtering (still denoted by
y(z)) would read as:

Obviously, the selection of S(z) should not introduce CCI nor
ISI, unless the later is controllable. Besides, note that row (or

column) balancing is a simple trick that can be very efficient
for improving the conditioning of a matrix [15]. Therefore,
we propose to select the post-filter such that

1. W(z) = W is a diagonal constant matrix. No CCI, no
ISI are introduced by the post-filter S(z).

2. Row balancing: ||S(2)[]3 = p.
The corresponding post-filter then immediately follows as:
S(z) =WU(z) ™, )
where W is the p X p diagonal matrix with elements

_r
IU)ill,

where [A]; stands for the i*" row of matrix A.

Wii =

4. PERFORMANCE COMPARISON

4.1. Performance analysis

The ability of the proposed solution to meet the objectives
of low norm and low condition number is illustrated below.
We simulate a complete beamforming scheme based on the
UU-decomposition. The condition number of the post-filter
U(z)~! and that of its modified version S(z) are computed.
Also, the output noise power, after post-filtering is estimated
for each post-filter. Table 1 displays the results obtained with
three different and randomly selected 3 x 3 MIMO Rayleigh
fading channels H(z).

Table 1. Power and conditioning

Postfilter Power | Postfilter Conditioning
Channels | U(2)~T [ S(z) U(z)~ ! S(z)
Channel 1 | 568.57 | 1.47 || 4599535. 37.02
Channel 2 46.82 | 1.20 41171. 11.41
Channel 3 | 126.64 | 1.33 323734, 20.57

The results displayed in table 1 show a very significant
improvement. It is therefore expected that this translates into
enhanced MIMO-OFDM performance.

We now investigate the effect of this modification in terms
of bit error rate performance. For the simulation we consider
two channel models: indoor and outdoor ITU Pedestrian with
parameters with 40MHz of bandwidth, Ns = 512 subcarri-
ers, with a 4-QAM modulation.

Fig. 3 and Fig. 4 depict the bit error rates vs SNR, for
the beamformers using the two post-filters U (z)~* and S(z).
Significant improvement are obtained in both contexts indoor
(Fig. 3) and outdoor (Fig. 4). The performance gain is very
important in the more severe outdoor context (Fig. 4).
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Fig. 3. BER comparison of the two beamformers: Outdoor
ITU channel model
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Fig. 4. BER comparison ofthe two beamformers: Indoor ITU
channel model

4.2. Comparison with QR-based Beamforming

In order to better observe the impact of this improvement, we
compare the obtained results with the performance of QR-
Based beamforming [8] in MIMO-OFDM system. For the
QR decomposition, we have set ¢ = 10~2 for the off di-
agonal elements’ tolerance parameter. With this value, the
residual CCI is small. The truncation parameter is selected as
p = 1073 to limit the growth of the degrees of the Laurent
polynomials in D(z). We refer to [8] for more details on the
meaning and roles of these parameters. The comparisons are
done through an outdoor pedestrian ITU MIMO 3 x 3 chan-
nel. Fig. 5 shows BER comparison of the two versions of the
UU-based beamforming with QR-based beamforming. The
comparison is performed on a complete transmission chain,
taking into account all aspects of the UU-decomposition and
the QR decomposition. With the UU-based beamformer us-
ing the original postfilter U(z) ™!, the combined negative ef-
fect of the noise amplification and ill-conditioning is so se-
vere that this beamforming scheme is not suitable except for
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Fig. 5. BER comparison of UU-based beamforming and QR-
based beamforming.

high SNR. Meanwhile, the proposed modification of the post-
filtering stage is efficient enough to limit the negative effect
of the noise postfiltering. The interesting properties of the
UU-decomposition (in terms of CCI and ISI) now become
apparent.

5. CONCLUSION

A solution is proposed to the problem of output noise en-
hancement, observed in MIMO beamforming systems using
the LU-based polynomial matrix decomposition. The role of
the postfilter in the performance degration is clarified: perfor-
mance decreases as the Ly-norm and/or the condition number
of the postfilter matrix-valued transfer function increases. A
row balancing of the postfilter is a simple solution for both
problem at once: it allows one to bring both the Ly-norm
and the condition number close to unity. Significant improve-
ment of the performance, in terms of bit error rate, are ob-
served. For example, simulation using the outdoor IUT chan-
nel model shows that the same BER level of 102 is reached
with the proposed solution with about 12dB drop in SNR
compared to the original setting. The interesting properties
(no CCI, no ISI) of the LU-based polynomial matrix decom-
position for MIMO beamforming thus become exploitable.
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