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ABSTRACT

The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is re-
garded as the state-of-the-art among a number of proximal gradient-
based methods used for addressing large-scale optimization prob-
lems with simple but non-differentiable objective functions. How-
ever, the efficiency of FISTA in a wide range of applications is ham-
pered by a simple drawback in the line search scheme. The local
estimate of the Lipschitz constant, the inverse of which gives the
step size, can only increase while the algorithm is running. As a
result, FISTA can slow down significantly if the initial estimate of
the Lipschitz constant is excessively large or if the local Lipschitz
constant decreases in the vicinity of the optimal point. We propose
a new FISTA-like method endowed with a robust step size search
procedure and demonstrate its effectiveness by means of a rigorous
theoretical convergence analysis and simulations.

Index Terms— FISTA, backtracking, line search, convergence

1. INTRODUCTION

Simple continuous convex optimization problems are used to model
many inverse problems and several simple classification tasks, par-
ticularly in imaging applications. Often, as in the case of sparse
inverse problems, the objective is not differentiable in certain parts
of the search space [1]. Accelerated algorithms that rely on gradient
information (e.g. [2]) cannot be used directly to solve such prob-
lems. However, if the problem objective has a composite structure,
certain algorithms are effective when supplied with proximal gra-
dient information, instead of gradient information [3]. Although the
number of variables can be large, usually of the order of millions [1],
with recent advances in graphics processors it is possible to compute
the proximal gradient on a single machine without the need for ex-
pensive communication between processing nodes. Consequently,
proximal gradient methods are increasingly employed for address-
ing composite problems, and have become the subject of very active
research [4-8]. Among proximal gradient methods, the Fast Itera-
tive Shrinkage-Thresholding Algorithm (FISTA) [9] is currently re-
garded as the state-of-the-art [1, 10].
FISTA is designed to solve the following problem:

min F(z) = f(2) + (), M)

where @ C R" is a closed convex set, & is a vector of optimization
variables, and F' is the objective function, which has a composite
structure, i.e., f is a convex differentiable function with Lipschitz
continuous gradient (Lipschitz constant L) and ¥ is a convex func-

tion that may not be differentiable nor defined outside Q. However,
U is simple in the sense that the proximal operator

1
prox, (v) = argmin (V(e) + e ofF) @)
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can be computed for any v in the search space and any non-negative
step size 7 in O(n) time. The popularity of FISTA owes to its sim-
plicity and speed, but mostly to its generality [10]. The algorithm
is unaware of the nature of the objective function or the problem
constraints. It progresses using a sequence of calls to a proximal
gradient routine, each involving one call to the proximal operator.

When the Lipschitz constant L ¢ is not known in advance, FISTA
employs a simple backtracking “line search” procedure. However,
the effectiveness of FISTA is hampered by a simple drawback in
the search scheme, namely the estimate of the Lipschitz constant
can only increase while the algorithm is running. As the step size
is set to be the inverse of the Lipschitz constant estimate, the line
search may slow the progress of the algorithm. In two situations, the
drawbacks of the search are evident: (i) Lo, the initial estimate of
Ly, far exceeds the actual value and (ii) the local curvature of f is
large in the vicinity of the initial iterates but decreases around the
optimal point.

A number of approaches addressing both aforementioned issues
have been proposed in the literature. A method that predates FISTA,
which we choose to call Nesterov’s Accelerated Multistep Gradient
Scheme (Nesterov’'s AMGS) [11], does feature a step size increase
schedule. While having comparable theoretical convergence guar-
antees to FISTA, it is slower in the most common applications [12].
A variation of Nesterov’s AMGS more similar to FISTA, mentioned
in [3], is nominally equipped with a step size increase option when
“conditions permit”. However, the study does not quantitatively de-
scribe these conditions nor does it provide any theoretical conver-
gence guarantees. In a recent study [13], FISTA has been equipped
with an “exact” line search procedure. This version comes with a rig-
orous convergence analysis but assumes that the objective function
is known to the algorithm, detracting from the generality of FISTA’s
black-box philosophy.

In this work, we propose an algorithm that alleviates the draw-
backs of FISTA in the above mentioned situations, rendering it ro-
bust in the sense that it can be applied without parameter adjust-
ment to the full spectrum of problems it addresses. Furthermore, our
method does not restrict the generality of FISTA and does not alter
the theoretical convergence guarantees while surpassing FISTA in
practice. We support our findings with simulation results.

2. ROBUST LINE SEARCH FISTA

Our goal is to create an algorithm that can dynamically adjust the
Lipschitz constant estimate at every iteration. The simplest and most
straightforward way of achieving this is by decreasing the Lipschitz
constant estimate slightly at the beginning of every iteration, relying
on backtracking to correct excessive reduction. This search strat-
egy is not applicable to FISTA (i.e., convergence cannot be theo-
retically guaranteed) because this method collects insufficient infor-
mation while it is running. In FISTA, the first iteration £ = 0 is
a proximal point step [10]. At every subsequent iteration k > 1,
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the new iterate @41 (estimate of optimal point &™) is obtained by
querying the proximal gradient not at the previous iterate &y, but at
a point Y41 obtained from the two preceding iterates oy and xx_1
through extrapolation, the extent of which depends on terms ¢; and
tr41 of a recursively defined weight sequence {¢;};>1. Although
not maintained explicitly while running, FISTA’s convergence anal-
ysis relies on an auxiliary sequence (which we denote by {z;}i>0)
that is updated in parallel with {@;};>0. Note that y11 can be ob-
tained as a convex combination of x; and zj, with the weighting
determined by tx and tj41.

FISTA benefits from the same simplification employed by the
Fast Gradient Method (FGM) [2]. When the step size is non-
increasing, the sequence {ti}izl can be determined a priori, irre-
spective of Lipschitz constant estimate values. Maintaining at every
iteration k the accumulated weight property

k+1
Tipr =) ti = 1w, k20, 3)

i=1

guarantees an O( ,712) rate of convergence, optimal for a class of first-

order algorithms introduced in [2]. By relaxing the non-increasing
step size assumption, the weight sequence {¢; };>1 can be updated to
take into account the current and past Lipschitz constant estimates,
yielding a more robust algorithm that retains the O(k%) rate of con-
vergence. Specifically, we can replace the accumulated weight prop-
erty (3) with

k+1
Tui =3 o= Duntho, VE20, @
where L1 represents the new Lipschitz constant estimate obtained
at iteration k. Equality in (4) ensures the fastest theoretical conver-
gence rate but our framework accommodates also methods that vio-
late equality to trade off speed for other desirable properties, such as
weak convergence of iterates [7] or ease of interpretation [14].
Using equality in (4), we propose the method outlined in Al-
gorithm 1. Our notation differs slightly from the one used by
FISTA [9]. We define the quadratic function Uy, () as

Uny(@) = f) + {0 f @)@ —y) + Sl -yl ©)

Then, by fixing the step size in (2) to be 7 = 1/L, the proximal
gradient expression becomes

pr(y) = arg rgin (UL,y(z) + Y (x)) (6)
xTe
=prox, (y — 7 f(y))- @)

While the formulation of our algorithm appears greatly dissimi-
lar to FISTA, in fact, we can obtain an algorithm that is completely
equivalent to FISTA (which we designate as z-FISTA) by simply re-
moving line 4 and by modifying lines 6 and 19. For z-FISTA, line 6

reads instead as
E._l+\/1+4Tk ®)
-2

and line 19 is replaced with zi11 = 21, + £(& — 9).

The relation of the remainder of parameters in Algorithm 1 to
those present in z-FISTA is listed in Table 1. In the proposed method,
the accumulated weight 71 constitutes a valid convergence rate
at each iteration k (see Section 3 for proof). The quantity Tj1
does not hold the same meaning in z-FISTA, where a valid conver-
gence rate is instead given by Tk+1 = Tk+1/Li+1. This is poorer

than in our method. In FISTA, {z;}i>0 and {7} };>0 are abstracted
away. Similarly, in the proposed method, there is no need to main-
tain {y; }:>1 nor {t;};>1 across iterations. Instead, we update only
current estimates of these sequences.

Algorithm 1 A robust FISTA-like algorithm
1: 20 = xo
2: To =0
3: fork=0....K-1do

5:  loop
2 14n/144LT
6: t:= 5T
7. T = Ty —‘ri
8: Y= %(Tkmk + fzk)
9: & :=p;(9)
10: if f(z) < Uﬁ,g(fc) then
11: Break from loop
12: else
13: i/ = ’yuﬁ
14: end if

15:  end loop

16: Lys1 =1L

17: Tpt1 = a::

18: Tey1 =T .

190 zpy =2z, +tL(2 —9)
20: end for

Table 1. Parameters and variables used by our method

. . z-FISTA
Type Symbol Domain Description equivalent
Input o R™ initial estimate of ™ same
Input Lo (0,00) initial estimate of Ly  same
Input Yu (1,00) increase rate of L same
Input 7 (0,1)  decrease rate of L none
Internal [ (0,00)  estimate of Ly same
Internal @ Q estimate of @1 same
Internal g R"™ estimate of Y41 Yk+1
Internal ¢ (0,00)  weight of zx+1 z’;—i
Internal 7 (0,00)  estimate of Tk41 fﬁ—i
Output xx Q final estimate of * same

Our method cannot be benchmarked directly against FISTA and
Nesterov’s AMGS in terms of theoretical computational complexity.
Each method calls a dynamic mix of functions which, depending on
the problem specification, may have vastly varying relative complex-
ities. Table 2 provides a detailed description of the type and number
of function calls in several stages of an iteration. Our method re-
quires more computation than FISTA for a backtracking operation
while showing no increase in complexity when no backtracks occur.
Nesterov’s AMGS cannot be compared in any algorithmic state as it
was designed to work without the need to implement function value
calls to f. An iteration of Nesterov’s AMGS does, however, require
at least two projection calls (proximal operator plus gradient compu-
tation) which gives it a clear disadvantage when these operations are
more complex than calls to f. Overall, our method strikes a balance
in a variety of situations, further contributing to its robustness.
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Table 2. Per iteration complexity, measured in terms of operator calls, of FISTA, Nesterov’s AMGS, and our method

FISTA Nesterov’s AMGS Our method

[ v/ prox g [ v/ prox g [ v/ prox g
Step size validation (lines 4 to 11) 2 1 1 0 2 1 2 1 1
Backtrack (lines 4 to 15) 1 0 1 0 2 1 2 1 1
State update (lines 16 to 19) 0 0 0 0 0 1 0 0 0
Iteration without backtrack (lines 4 to 19) 2 1 1 0 2 2 2 1 1

3. CONVERGENCE ANALYSIS

While our method does not keep track of the sequences {yx }x>1
and {t }r>1, they can be easily recovered. Lines 6, 7, 8 and 18 in
Algorithm 1 imply that

vk >0, )
vk > 0. (10)

tet1 = Thyr — Tk,
Tror1Yrt1 = TeTr + tey1 2k,
Given that for every k > 1, a;, satisfies relations
f(mk) < ULkﬁyk‘,(wk)7 (11
Tk = pr, (Y), (12)
enforced by lines 9, 10, 16 and 17 in Algorithm 1, it follows that
[9, Lemma 2.3] holds for all kK > 1 and & € R", that is
L
F(x) — F(xr) > 7’““% — yklls + Li(yr — @, zk — yi). (13)
Let us consider the sequence { Ay} >0, defined as

* 1 >k
Ap =Te(F(zx) = F7) + 5 llzx — @ 13, Vk>0. (14

We aim to prove that this sequence is non-increasing. Indeed, apply-
ing (13) at iteration k + 1 (for all ¥ > 0) using , and ™ as values
of  we obtain

Ly
F(ax) = F(@rin) 2 =5 [@rn — yie |3+ (15)
Li+1{Yr+1 — Tk, Thot1 — Y1),
* L
F(z") = Flaesn) 2 =5 @i — yr5+ (16)

Lit1(Yrt1 — ", Tho1 — Yrr1).

Lines 6, 7, 16 and 18 ensure that (4) holds with equality. Using (9),
(10), and (4) in T}, - (15) + tx+1 - (16) we obtain

Tk(F(wk)—F*)—Tk+1(F(:1:k+1)—F*) Z (17)
Lisitesr|@eer — rsrlld + tes1 Lisr (26 — %, @pr1 — Y1)
Lines 16 and 19 translate into the following recursion rule:

zZp41 = 2k + tep1 Lot (Tot1 — Yrt1), Yk > 0. (18)

Then, using (18) in (17) and rearranging terms, we obtain the desired
result,

Apt1 <Ay, VE>0. (19)
This last inequality implies that every term Ay, k& > 1, is upper
bounded by Ao. Given that Ag = 1|0 — «*||3 and that the quan-
tity 5 ||z, — @*||3 is always non-negative, we can write down a con-
vergence rate explicitly as

* 1 *
Fleg) — F" < —|o—x \|§,

> 1.
< o7 VE >1 (20)

Clearly, T}, constitutes a valid convergence rate. To obtain a sim-
ple closed form convergence rate, it suffices to find a simple lower
bound for 7. When Ly > Ly, due to the Lipschitz continuous
property of 57 f, inequality (11) holds regardless of the values of xy,
and yi. Hence, the backtracking search will never produce a value
of Ly, beyond v, Ly. Therefore, combining (4) with Ly < v, Ly we
obtain

1 1 Ty
T, > T, + + + ,
L=k 29u Ly \/4('YuLf)2 Yuliy

Using (21) and Ty = 0, it follows through induction that

(k+1)2
T, >~ > 1. 22
TN vk > (22)

vk >0. (21)

Finally, substituting the lower bound on 7} (22) in (20) we ob-
tain the same quadratic convergence rate as the original FISTA
[9, Theorem 4.4], namely

2’}/uLf
(k+1)2

Note that our convergence analysis is more general than the one
provided in [9]. Inequality (19) applies to FISTA as well (by replac-
ing T} with T, = ti/Lk for k > 1 and setting T, = 0) and can be
used to obtain the same convergence rate for variations on the weight
update rule (8).

Fxg) — F" < llzo — 2"|I3,

VE>1.  (23)

4. NUMERICAL ANALYSIS

The performance of our method (Algorithm 1) was tested and com-
pared to that of FISTA with backtracking line search and Nesterov’s
AMGS on the [; regularized deblurring of a simple test image.
For ease of benchmarking, we used the experimental setup from
[9, Section 5.1]. The composite objective function is given by

fl@) = Az = bl3,  ¥(z)= Az, (24)

where A = RW; R is a matrix representing Gaussian blur (9 x 9
pixel kernel, standard deviation 4.0, reflexive boundary condi-
tions [15]); W is the inverse three-stage Haar wavelet transform; b
is obtained by applying R to the 256 x 256 cameraman test image
(pixel values scaled to the [0, 1] range), followed by the addition of
Gaussian noise (zero-mean, standard deviation 10’3). Here, v f
has a Lipschitz constant value Ly = 2.0, computed as the maximum
eigenvalue of a symmetric Toeplitz-plus-Hankel matrix, according
to [15], and A\ = 2 - 107" is a regularization parameter. In addi-
tion, we chose v, = 2.0 and 74 = 0.9 for each method tested, as
these values were suggested in [3] to “provide good performance in
many applications”. Two scenarios are considered: a pathologically
overestimated initial guess Lo = 10L; (Fig. 1) and a normally
underestimated Lo = 0.3L; (Fig. 2).
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Fig. 1. Comparison of FISTA, Nesterov’s AMGS, and our method for an overestimated initial Lipschitz constant: Lo = 10L
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Fig. 2. Comparison of FISTA, Nesterov’s AMGS, and our method for an underestimated initial Lipschitz constant: Lo = 0.3Ly

Convergence is measured in terms of the difference between ob-
jective function values and an optimal value estimate, during the first
1000 iterations (Figs. 1(a) and 2(a)). This estimate was computed as
F(a*), where * is the iterate obtained after running fixed step size
FISTA with the correct Lipschitz constant parameter for 10000 iter-
ations. Key algorithm state parameters, such as Lipschitz constant
estimates (Figs. 1(b) and 2(b)) and inertial degrees (Figs. 1(c) and
2(c)) are shown only during the first 100 iterations, as subsequent it-
erations did not reveal more information. Inertial degrees are defined
at every iteration k£ > 0 as the cosine of the angle between yx41 and
x) at £r—1. When two of these points match, the inertial degree is
setto 1.

In both scenarios, after the first 400 iterations, our method
clearly surpasses the others in terms of function value (Figs. 1(a)
and 2(a)). FISTA converges slowly, especially in the pathological
case where, as expected, FISTA is unable to reduce its Lipschitz
constant estimate (Fig. 1(b)), whereas the other methods are able to
decrease their estimates at comparable rates during the first 30 itera-
tions. Under normal conditions (Fig. 2(b)), FISTA quickly increases
its estimate in the first iterations after which the value reaches a
saturation level. The other methods are constantly adjusting their
estimates. In both situations, our method produces on average a
lower Ly, than the other two methods. FISTA’s inability to reduce
Ly, accounts for its high estimates whereas Nesterov’s AMGS has a
stricter backtracking condition than our method or FISTA, leading
to more backtracks.

In our method, just as in FISTA, yr+1, *x and xr_; are
collinear (Figs. 1(c) and 2(c)). However, in Nesterov’s AMGS they
are not, contradicting the notion found in several monographs in the
field (e.g. [10,16]) that all accelerated first order methods rely on ex-

trapolation. We provide in [12] a rigorous proof of collinearity in the
proposed method and corroborate the superiority of our algorithm
with a more detailed performance analysis.

In summary, our method can be regarded as a hybrid of FISTA
with its collinear iterates (Figs. 1(c) and 2(c)) and Nesterov’s AMGS
with its dynamic step search procedure (Figs. 1(b) and 2(b)), benefit-
ing from the strengths of these methods while alleviating the draw-
backs. Namely, our method produces more accurate estimates of
the local curvature of f (unlike the artificially high estimates of
FISTA) and is able to utilize both gradient and subgradient infor-
mation (whereas Nesterov’s AMGS updates a weighted average of
gradients without taking into consideration the subgradient of W),
resulting in larger steps and, consequently, faster convergence.

5. CONCLUSION

By updating the weight sequence to take into account the current
and past Lipschitz constant estimates, we have devised a FISTA-like
algorithm with a robust step size search strategy. We have shown
that the same theoretical convergence rate of O(k%) applies to our
method, with a provably smaller constant. Simulation results on the
very problem FISTA was introduced to solve show that our method
surpasses both FISTA and the more complex Nesterov’s AMGS,
without the need to adjust any parameters.

The properties of the proposed method follow naturally from the
augmented estimate sequence framework [12]. In fact, our method is
a particular case of the Accelerated Composite Gradient Method, a
general-purpose optimization scheme [12]. Thus, the concepts pre-
sented in this work are of importance to the entire field of accelerated
optimization algorithms.
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