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ABSTRACT

This paper addresses the behaviour of a classical multi-antenna GLR
test that allows to detect the presence of a known signal corrupted by
a multipath propagation channel when the number of sensorsM , the
sample size N , and the number of paths L are large and of the same
order of magnitude. In the asymptotic regime where M,N and L
converge towards ∞ at the same rate, the test statistics is shown
to be asymptotically Gaussian under each hypothesis. The results of
this paper extend previous contributions of the authors that addressed
the case where the number of paths L is much smaller than M and
N , and used these results in order to propose a pragmatic Gaussian
approximation of the test statistics when L is large. Simulation re-
sults indicate that the proposed Gaussian approximation of the test
statistics is more reliable than the above mentioned pragmatic ap-
proximation.

Index Terms— Multichannel detection, asymptotic analysis,
large random matrices

1. INTRODUCTION

Multivariate signals that are observed at the output of massive
MIMO multi-antenna receivers are of course high-dimensional, and
in this context, the available number of observations N is very often
of the same order of magnitude as the number of sensors M . It
is now well understood that in this case, standard statistical multi-
variate signal processing problems such as source localization ([8],
[11]), source power estimation ([4]), detection ([7],[9], [2]), or syn-
chronization ([10]) need to be revisited, since standard statistical
methodologies provide reliable results only when the ratio M

N
is

small enough.
In [10], we addressed the detection problem of a known synchro-

nization sequence transmitted by a single transmitter in an unknown
multipath propagation channel when the receiver is equipped with
a massive antenna array. We assumed that the observations were
corrupted by a temporally white, but spatially correlated (with un-
known spatial covariance matrix) additive complex Gaussian noise,
and studied the behaviour of the generalized likelihood ratio test
(GLRT) when the number of sensorsM and the lengthN of the syn-
chronization sequence are large and of the same order of magnitude.
Under the assumption that the number of paths L is much smaller
than M and N , we proved that the GLR test statistics has a Gaus-
sian behaviour under each hypothesis. However, we observed that
even for reasonably small values of L, this Gaussian approximation
does not allow to accurately predict the ROC curves of the GLRT.
When L is of the same order of magnitude as M and N , existing
results concerning centered large Fisher random matrices ([12], [1])
allowed to conclude that under the null hypothesis H0, the GLRT
statistics has a Gaussian behaviour whose mean and variance can be

expressed in closed form. The behaviour of the test statistics un-
der hypothesis H1 is mathematically much harder because it needs
to establish a central limit theorem for a certain linear statistics of
the eigenvalues of a large random non zero mean Fisher matrix, a
question that is not covered by existing results. In [10], we rather
proposed a pragmatic Gaussian approximation providing reasonably
accurate results.

In the present paper, we study more rigorously the behaviour
of the test statistics under hypothesis H1, and prove that it has a
Gaussian behaviour. Due to space limitations, we do not provide the
proof of this technical result. We rather compare the new approxi-
mation with the pragmatic proposal of [10], and establish that in a
certain SNR range, the two approximations coincide, thus explaining
the nice behaviour of the large L approximation of [10]. However,
for large SNR, the two approximations differ, and simulation results
show that the new proposed approximation provides more accurate
results.

This paper is organized as follows. In section 2, we provide
the signal model under hypotheses H0 and H1, recall the expression
of the statistics ηN corresponding to the GLRT test, and recall that
in order to study the probability distribution of ηN under the two
hypotheses, there is no restriction to assume that the additive noise
is spatially decorrelated and that the training sequence matrix is
orthogonal. In section 3, we review the main results of [10]. In
section 4, we present the main result of this paper, and compare the
corresponding Gaussian approximation with the pragmatic proposal
of [10]. In section 5, we provide numerical results to demonstrate
that the new approximation allows to predict in a more reliable way
the ROC curves of the GLRT in a reasonable range of probability of
false alarm and of probability of detection.

General notations. For a complex matrix A, we denote by AT

and A∗ its transpose and its conjugate transpose, and by Tr(A) and
‖A‖ its trace and spectral norm. I represents the identity matrix.
The real normal distribution with meanm and variance σ2 is denoted
NR(m,σ

2). A complex random variable Z = X + i Y follows
the distribution NC(α + i β, σ2) if X and Y are independent with
respective distributions NR(α,

σ2

2
) and NR(β,

σ2

2
). For a sequence

of random variables (Xn)n∈N and a random variable X , we write
Xn →D X when Xn converges in distribution to X when n →
+∞.

2. PRESENTATION OF THE PROBLEM.

In the following, we assume that a single transmitter sends a known
synchronization sequence (sn)n=1,...,N through a channel with L
paths, and that the corresponding signal is received on a receiver
equipped with M sensors. The received M -dimensional signal
is denoted by (yn)n=1,...,N . When the transmitter and the re-
ceiver are perfectly synchronized, the M × N observed matrix
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Y = (y1, . . . ,yN ) can be written as

Y = HS+V (1)

where V = (v1, . . . ,vN ) is the additive noise matrix, H the M ×
L channel matrix and S the L × N matrix corresponding to the
known synchronization sequence. In the following, we assume that
(vn)n∈Z is an additive independent identically distributed complex
Gaussian noise verifying

E(vn) = 0, E(vnv
T
n ) = 0, E(vnv

∗
n) = σ2R

where R > 0 satisfies 1
M
Tr(R) = 1. We also assume that the size

N of the training sequence satisfies N > M + L. In this paper, we
study the classical problem of testing the hypothesis H1 character-
ized by Eq. (1) against the hypothesis H0 defined by

Y = V (2)

We assume from now on that H, σ2 and R are unknown at the re-
ceiver side. In this context, it is well established (see e.g. [3]) that
the generalized maximum likelihood test consists in comparing the
following statistics ηN to a threshold:

ηN = − log det [IL −TN ] , (3)

where TN is the L× L matrix defined by

TN =

(
SS∗

N

)−1/2
SY∗

N

(
YY∗

N

)−1
YS∗

N

(
SS∗

N

)−1/2

. (4)

In order to study the behaviour of the test above, we study the limit
distribution of ηN under each hypothesis. For this, we recall that it
is possible to assume without restriction that the matrix S verifies
SS∗

N
= IL and that E(vnv∗n) = σ2I, i.e. the matrix R is reduced to

identity. Moreover, there exist two independent M × (N − L) and
M×L complex Gaussian matrices V1 and V2 with i.i.d. NC(0, σ

2)
entries such that ηN can be written as

ηN = log det
(
IL +V∗2/

√
N (V1V

∗
1/N)

−1
V2/
√
N
)

(5)

under hypothesis H0, and as

ηN = log det (IN +GN ) (6)

under hypothesis H1. Here, the matrix GN is defined by

GN =
(
H+V2/

√
N
)∗

(V1V
∗
1/N)

−1
(
H+V2/

√
N
)
. (7)

For more details, we refer the reader to section II of [10]. In the
following sections, we study the asymptotic behaviour of the distri-
bution of ηN in the following asymptotic regime:

Assumption 1. M,N,L converge towards +∞ in such a way that
cN = M

N
and dN = L

N
converge towards c > 0 and d > 0 with

c+ d < 1

In order to simplify the notations, this regime will be denoted as
N → +∞. We note that the condition c+ d < 1 is consistent with
the assumption that M + L < N . As the dimensions of the matrix
H grow with M,N,L, we also have to specify the behavior of H.
In the following, we assume that supN ‖H‖ < +∞, i.e. that the
spectral norm of H remains finite when its dimensions increase. We
finally recall that the behaviour of ηN under hypothesis H0 follows
from existing mathematical results (see below for more details), and
therefore concentrate on the behaviour of ηN under hypothesis H1.

3. REVIEW OF THE RESULTS OF [10].

In this section, we review the main results of [10], concentrating on
the pragmatic approximation of ηN under Assumption 1 and hypoth-
esis H1. In order to explain the structure of this pragmatic approxi-
mation, we first recall the behaviour of ηN when the number of paths
L remains fixed. The following result holds.

Theorem 1. In the asymptotic regime where M,N converge to-
wards +∞ in such a way that cN = M

N
converges towards c < 1

and where L is a fixed parameter that does not scale with M,N ,
under hypothesis H1, it holds that

(δN,1)
−1/2(ηN − ηN,1)→D NR(0, 1) (8)

where ηN,1 and δN,1 are defined by

ηN,1 =L log
1

1− cN
+ log det

(
I+H∗H/σ2)

δN,1 =
L

N

cN
1− cN

+
κ

N

with κ = Tr

[
I−

(
I+ H∗H

σ2

)−2
]

Remark 1. As L remains finite, the dimensions of the L×L matrix
GN defined by (7) do not grow when M,N → +∞. Therefore,
in order to study the behaviour of ηN = log det(IL + GN ), it is
sufficient to evaluate the behaviour of each entry of GN and to use a
classical linearization argument. We also remark that the asymptotic
variance of ηN converges towards 0 at rate 1

N
.

Remark 2. The results related to hypothesis H0 are obtained from
the results concerning H1 by setting H = 0.

We now recall the behaviour of the distribution of ηN under hy-
pothesis H0 in the regime defined by Assumption 1.

Proposition 1. In the asymptotic regime defined by Assumption 1,
under H0, it holds that

(δN,2)
−1/2 (ηN − ηN,2)→D NR(0, 1) (9)

where ηN,2 and δN,2 are defined by

ηN,2 =−N ((1− cN ) log(1− cN ) + (1− dN ) log(1− dN ))

+N(1− cN − dN ) log(1− cN − dN )

δN,2 = log

(
(1− cN )(1− dN )

1− cN − dN

)
(10)

Remark 3. We remark that in contrast with the case where L re-
mains fixed, it is not sufficient to evaluate the behaviour of the indi-
vidual entries of matrix GN in order to obtain the behaviour of ηN .
(9) follows from the observation that

ηN = log det
(
IM + (V2V

∗
2/N) (V1V

∗
1/N)

−1
)

and thus coincides with a linear statistics of the eigenvalues of the
matrix V2V

∗
2/N (V1V

∗
1/N)−1. This matrix is a Fisher matrix,

and the asymptotic behaviour of ηN follows from the results of [1]
and [12].
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Remark 4. We mention that ηN,2 increases linearly with M,N,L,
and that the asymptotic variance δN,2 is a O(1) term. This in con-
trast with the regime L fixed in which the asymptotic mean is aO(1)
term and the asymptotic variance is aO(1/N) term. We finally men-
tion that it can be shown that the relative error between E(ηN ) and
its approximation ηN,2 is O( 1

N2−ε ) for each ε > 0.

As mentioned in [10], the asymptotic mean and the asymptotic
variance of ηN in the regimeM,N converge towards +∞ and L re-
mains finite have an additive structure: ηN,1 is the sum of two terms:
the asymptotic mean of ηN under H0 in the considered asymptotic
regime (i.e. L log 1

1−cN
) and the asymptotic mean of ηN in the stan-

dard asymptotic regime where N → +∞ and M and L are fixed
(i.e. log det

(
I+H∗H/σ2

)
). The asymptotic variance is also the

sum of the asymptotic variance under H0 (i.e. L
N

cN
1−cN

) with the
asymptotic variance under H1 in the regime N → +∞ and M,L
fixed (i.e. κ/N ). Proposition 1 as well as the additive structure
of ηN,1 and δN,1 suggested us to propose in [10] to approximate the
distribution of ηN underH1 in regime defined by Assumption 1 by a
NR(ηN,3, δN,3) where ηN,3 = ηN,2 + log det

(
I+H∗H/σ2

)
(i.e.

the sum of the asymptotic mean of ηN under H0 with the asymp-
totic mean of ηN when N → +∞ and M,L remain fixed) and
δN,3 = δN,2 + κ

N
(i.e. the sum of the asymptotic variance of ηN

under H0 with the asymptotic variance of ηN when N → +∞ and
M,L remain fixed). The numerical results of [10] showed that the
approximation NR(ηN,3, δN,3) is more accurate than the approxi-
mationNR(ηN,1, δN,1) even if L remains small compared to M,N .

4. GAUSSIAN APPROXIMATION OF ηN UNDER
HYPOTHESIS H1.

In this section, we present the main result of this paper, and point
out the connections between the proposed Gaussian approximation
of ηN and the pragmatic approximationNR(ηN,3, δN,3) proposed in
[10]. In order to introduce our theorem, we have to introduce some
notations. We first define sN as the unique positive solution of the
equation

sN =
1

M
Tr

(
σ2(1− cN )I+

HH∗

1 + σ2cNsN

)−1

(11)

and denote by SN the M ×M matrix given by

SN =

(
σ2(1− cN )I+

HH∗

1 + σ2cNsN

)−1

(12)

The following result holds.

Theorem 2. Under Assumption 1 and hypothesis H1, it holds that

(δN )−1/2(ηN − ηN )→D NR(0, 1) (13)

where ηN and δN are defined by

ηN = log det

(
(1− cN ) I +

HH∗

σ2(1 + σ2cNsN )

)
+

Mσ2(1− cN )

(
1

σ2(1− cN )
− sN

)
+N log(1 + σ2cNsN )−

N ((1− dN ) log(1− dN )− (1− cN − dN ) log(1− cN − dN ))
(14)

and

δN = log

(
1− dN

1− cN − dN

)
−log

(
1 + σ4cN (1− cN )

1

M
Tr(S2

N )

)
(15)

The proof of this result is quite intricate, and we will only pro-
vide the general strategy. We first mention that using existing re-
sults concerning the so-called Information + Noise models (see e.g.
[6], [5]), it is easy to establish that E(ηN ) = ηN + O( 1

N1−ε ) for
each ε > 0. The difficult part of the proof consists in evaluat-
ing the asymptotic behaviour of the characteristic function gN (u)
of ηN − E(ηN ). The general approach we follow is based on the
following expression of gN (u):

gN (u) = E
[
eiu(EV1

(ηN )−E(ηN )) E
(
eiu(ηN−EV1

(ηN ))|V2

)]
where EV1 represents the mathematical expectation operator w.r.t.
V1 and where E(.|V2) is the conditional expectation operator given
V2. It is possible to establish that for each u,

E
(
eiu(ηN−EV1

(ηN )|V2

)
' e−ξN u2/2

where ξN represents a positive deterministic term. From this, we
deduce that

gN (u) ' e−ξN u2/2 E
[
eiu(EV1

(ηN )−E(ηN ))
]

and prove that E
[
eiu(EV1

(ηN )−E(ηN ))
]
' e−χN u2/2. This, in

turn, implies that gN (u) ' e−(ξN+χN )u2/2 and that (ξN +

χN )−1/2 (ηN − E(ηN )) converges in distribution towards aN (0, 1)
random variable. We finally comment on Theorem 2.

We first mention that if H = 0, then, sN defined by Eq. (11)
coincides with 1

σ2(1−cN )
, and that ηN and δN coincide with ηN,2

and δN,2 respectively.
We now compare the pragmatic approximation NR(ηN,3, δN,3)

with the approximation provided by Theorem 2 in the case where
Tr(HH∗) remains bounded whenN → +∞. In this case, it is easy
to check that sN defined by Eq. (11) can be written as

sN =
1

σ2(1− cN )
+O( 1

N
)

Using standard first order expansions, we obtain immediately that
ηN,3 = ηN + O( 1

N
) and δN,3 = δN + O( 1

N
). Therefore, when

Tr(HH∗) remains bounded, the two approximations tend to coin-
cide. We remark that the signal to noise ratio at the receiver side co-
incides with Tr(HH∗)

σ2 , so assuming that Tr(HH∗) remains bounded
implies in practice that the signal to noise ratio is low. This condi-
tion is of course much stronger than the condition that ‖H‖ remains
bounded, which, rather, implies that Tr(HH∗) = O(M), and corre-
sponds to high signal to noise ratios. Therefore, at moderate signal to
noise ratios, the pragmatic approximation NR(ηN,3, δN,3) behaves
as the rigorous one, thus explaining the accuracy of the pragmatic
Gaussian approximation of [10].

5. NUMERICAL RESULTS

In this section, we compare the accuracies of the approximations
NR(ηN,3, δN,3) and NR(ηN , δN ). The true mathematical expecta-
tion and the true variance of ηN , as well as the ROC curves corre-
sponding to the GLRT, are evaluated by generating 107 independent
realizations of ηN . In each experiment, the matrix H is generated
as H = G/ (Tr(GG∗))−1/2 where G is a realization of a M × L
random matrix with i.i.d. NC(0, 1) entries. Therefore, H is normal-
ized in such a way that Tr(HH∗) = 1, and the signal to noise ratio
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coincides with 1
σ2 . Finally, in all our experiments, cN = M/N is

fixed to 1/2, while dN = L/N = 1/4.
We first represent for various values of L in figures 1 and 2 the

relative errors on E(ηN ) and on Var(ηN ) provided by the two ap-
proximations when 1

σ2 = M
24

(low SNR) and 1
σ2 = M

7
(high SNR).

We recall that for each value of L, M and N satisfy dN = 1/4 and
cN = 1/2. As expected, the proposed approximation NR(ηN , δN )
appears much more accurate thanNR(ηN,3, δN,3), and the accuracy
of the latter tends to decrease when the SNR increases. In other
words, for low SNR, both approximations are valid (although the
proposed approximation gives a more accurate theoretical expected
value), but with high SNR,NR(ηN,3, δN,3) is less accurate.

Fig. 1. Relative errors in expected value under hypothesis H1

Fig. 2. Relative errors in variance under hypothesis H1

In order to validate the asymptotic Gaussianity of ηN under H1,
we show in figure 3 the histogram of the realizations of ηN , together
with the probability densities of NR(ηN,3, δN,3) and NR(ηN , δN ).
In figure 3, L = 20 and 1

σ2 = M/7 (high SNR). It is clear that the
proposed asymptotic distribution offers a better fit with the empirical
distribution of ηN .

We finally evaluate the accuracy of the two approximations by
comparing their theoretical ROC curves to the empirical ROC curve
evaluated from the 107 realizations of ηN . For each approximation,
the threshold corresponding to each false alarm probability is evalu-
ated using the Gaussian approximationNR(ηN,2, δN,2) of ηN under
H0. Figures 4 and 5 represents the three ROC curves for two differ-
ent SNR values and L = 20 and L = 50 respectively. The ROC
curve corresponding to the proposed approximation appears more
accurate than the ROC curve associated toNR(ηN,3, δN,3)

Fig. 3. Histogram of ηN with Gaussian approximations for L = 20
and σ2 = 7/M

Fig. 4. Empirical and theoretical ROC curves for L=20, σ2 = 7/M

Fig. 5. Empirical and theoretical ROC curves for L=50, σ2 = 24
M

6. CONCLUSION

In this paper, we have established a central limit theorem for the
GLRT statistics ηN under hypothesis H1 in the asymptotic regime
where the dimensions N,M,L all go to infinity at the same rate.
The corresponding asymptotic expected value and variance are ex-
pressed in closed form. It is established that the pragmatic Gaussian
approximation proposed in [10] tends to have the same accuracy than
the new approximation at low SNR, but that the performance of the
new proposal is much better at high SNR. Simulation results confirm
these theoretical claims, and demonstrate that the proposed Gaussian
approximation allows to predict in a reliable way the ROC curves of
the GLRT.
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