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Abstract—This paper deals with non-Bayesian parameter
estimation under the mean-squared-error (MSE), which is a
topic of great interest in various engineering fields. Although
the unbiasedness condition is commonly used in non-Bayesian
MSE estimation, in many cases biased estimation may result in
better performance. However, no method for determining the
optimal bias function in general cases is available. We propose
a new approach for uniform minimum MSE biased estimation,
where the optimal bias is chosen in accordance with Lehmann-
unbiasedness definition. The proposed approach is based on
modifying the MSE risk by its multiplication with a weighting
function of the unknown parameter, g

2. Under this modified
risk, Lehmann’s definition of unbiasedness provides a condition
referred to as g-unbiasedness. By using the g-unbiasedness, we
derive a novel Cramér-Rao-type lower bound on the MSE of
locally g-unbiased estimators. In addition, we show that if there
exists an estimator that achieves the new bound, then it is
produced by the penalized maximum likelihood estimator with
a penalty function log g. Simulations show that the proposed
approach can lead to non-trivial estimators with lower MSE than
existing mean-unbiased estimators.

Keywords—Non-Bayesian parameter estimation, mean-squared-
error (MSE), Lehmann-unbiasedness, penalized maximum likeli-
hood, Cramér-Rao bound

I. INTRODUCTION

Various engineering applications require estimation of un-
known parameters, for example in signal processing, speech
processing, and communications. The performance of estima-
tors is commonly evaluated by the mean-squared-error (MSE)
[1], [2]. In the non-Bayesian framework, minimizing the MSE
without any restrictions yields the trivial estimator, which has
a zero risk. Thus, some restrictions on the estimators are often
applied. A commonly-used restriction is mean-unbiasedness
[2, C. 2], [3], for which the Cramér-Rao bound (CRB) [4],
[5] provides a performance benchmark. However, in several
estimation problems the set of mean-unbiased estimators is
empty [6], [7]. In addition, in many estimation problems mean-
unbiased estimators may be “silly” [8, p. 253] or may not be
admissible in the MSE sense [9]. Other approaches for non-
Bayesian estimation include shrinkage estimation [9], [10],
minimax estimation [2, C. 5] [11], and equivariance [2, C.
3], [12].

It is shown in [9], [13]–[18] that in some scenarios, there
may exist biased estimators, which uniformly dominate the
MSE of the minimum variance unbiased (MVU) estimator.
In [19], [20], biased estimation is considered and uniform
Cramér-Rao lower bounds (UCRLBs) on the total variance of
any estimator with bounded bias gradient norm are derived. It
is shown in [20] that under some conditions, the UCRLB is

attained asymptotically by a class of penalized maximum like-
lihood (PML) estimators. The PML estimator [21] is obtained
by maximizing a penalized likelihood function and is widely
used in many engineering applications (see e.g. [22]–[24]). A
comprehensive tutorial on biased estimation can be found in
[25]. In addition, a structured approach for obtaining uniformly
best biased estimators is proposed in [26]. However, there is
no general procedure for finding the optimal bias function in
general biased estimation models.

In this work, we propose a new Cramér-Rao-type bound,
where the Lehmann-unbiasedness is imposed on a modified
risk. The modified risk is the MSE multiplied by the square
of a weighting function, g, where g is a function of the
unknown deterministic parameter. For this modified risk, we
derive the Lehmann’s condition for unbiasedness, denoted by
g-unbiasedness. Lehmann’s unbiasedness [27] is a generaliza-
tion of the conventional mean-unbiasedness for arbitrary cost
functions that has been used in various models [28]–[38]. The
g-unbiasedness condition is defined both in the uniform and the
local sense. Then, we derive a novel Cramér-Rao-type bound
on the MSE of locally g-unbiased estimators that is lower than
or equal to the conventional CRB. The proposed bound is lower
due to the mean-bias and not due to lack of tightness. It is
shown that when an estimator exists that uniformly attains the
bound, named as a g-efficient estimator, it coincides with a
PML estimator. We derive an ordinary differential equation
(ODE) that the weighting function g should satisfy, in order
that g-efficient estimators will be locally g-unbiased. Our
approach is examined in two examples in which estimators
with uniformly lower MSE than the MVU estimator can be
found.

II. PROBLEM FORMULATION AND DEFINITIONS

We consider the following estimation problem: Let
(Ωx,F , Pθ) denote a probability space, where Ωx is the
observation space, F is the σ-algebra on Ωx, {Pθ} is a family
of probability measures parameterized by the deterministic
unknown parameter θ ∈ Ωθ, and Ωθ is the parameter space,
which is an open subset of R. In this work, we will focus on
scalar unknown parameter, θ. Extension to vector parameter is
beyond the focus of this paper. The probability measure, Pθ,
is assumed to have an associated probability density function,
fx(·; θ). Expectation with respect to (w.r.t.) Pθ, θ ∈ Ωθ, is
denoted by E[·; θ]. For simplicity of notations, we omit θ from
the notation of expectation and denote it by E[·], whenever the
value of θ is clear from the context. In addition, we denote by

θ̂ : Ωx → Ωθ an arbitrary estimator of θ based on a random
observation vector x ∈ Ωx.

In the following, we denote vectors by boldface lowercase
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letters. The kth element of the vector b is denoted by bk.
The derivative of a function g(θ) at point θ0 is denoted by
d
dθg(θ)

∣

∣

∣

θ0
or g′(θ0).

We define the following g-squared-error (g-SE) cost func-
tion

g-SE(θ̂, θ)
△
=

(

g(θ)(θ̂ − θ)
)2

, (1)

where g : Ωθ → R+ is a positive weighting function

of differentiability class C2. The g-MSE of θ̂ at θ is de-

fined as g-MSE
θ̂
(θ)

△
= g2(θ)MSE

θ̂
(θ), where MSE

θ̂
(θ)

△
=

E
[

(θ̂ − θ)2
]

is the MSE of θ̂ evaluated at θ. In the following,

the weighting function g is used to define g-unbiasedness.
According to Lehmann’s concept of unbiasedness [27],

[28], an estimator is unbiased w.r.t. some cost function if on
the average it is “closer” to the true parameter rather than to
any other value in the parameter space. The closeness between
the estimator and the parameter is measured by the chosen cost
function, which leads to different unbiasedness definitions for
different cost functions [28]–[38].

The generalized Lehmann-unbiasedness definition with an
arbitrary cost function can be found, e.g. in Definition 1 in

[28]. Based on this generalized definition, an estimator θ̂ of θ
is unbiased w.r.t. the g-SE cost function if

E
[

g2(θ)(θ̂ − θ)2; θ
]

≤ E
[

g2(η)(θ̂ − η)2; θ
]

, ∀η, θ ∈ Ωθ.

(2)
The condition in (2) is equivalent to requiring that the global

minimum of E
[

g2(η)(θ̂ − η)2; θ
]

w.r.t. η is achieved at η =

θ, ∀θ ∈ Ωθ. In the following theorem, we present a necessary
condition for an estimator to be unbiased in the Lehmann sense
w.r.t. the g-SE cost function. We denote this condition on θ̂ as
g-unbiasedness.

Theorem 1. Let θ̂ be an estimator of θ. Then, a necessary

condition for θ̂ to be unbiased in the Lehmann sense w.r.t. the
g-SE cost function is

g(θ)E[θ̂ − θ] = g′(θ)E
[

(θ̂ − θ)2
]

, ∀θ ∈ Ωθ. (3)

Proof 1. Assuming that E
[

g2(η)(θ̂ − η)2; θ
]

is a differen-

tiable function of η. Then, a necessary condition for θ̂ to be
unbiased in the Lehmann sense w.r.t. the g-SE cost function is
that

d

dη
E
[

g2(η)(θ̂ − η)2; θ
]

∣

∣

∣

∣

η=θ

= 0. (4)

Under the assumption that the expectation and derivative can
be interchanged, we can rewrite (4) as

2g2(θ)E[θ̂ − θ; θ] = 2g(θ)g′(θ)E
[

(θ̂ − θ)2; θ
]

. (5)

By dividing both sides of (5) by the positive function 2g(θ),
one obtains the g-unbiasedness condition from (3). �

It can be verified that by substituting g(θ) = const in (3),

one obtains the conventional mean-unbiasedness, E[θ̂ − θ] =
0, ∀θ ∈ Ωθ. In general, the choice of g imposes a relation
between the estimator’s bias and MSE.

Theorem 1 provides a uniform unbiasedness condition, i.e.
unbiasedness for any θ ∈ Ωθ. In the non-Bayesian framework,

local unbiasedness in which the estimator is assumed to be
unbiased only in the vicinity of the true parameter, can be
useful as well, e.g. for derivation of the CRB [39]. In the
following, we define local g-unbiasedness by using Theorem
1 in the vicinity of an interior point θ0 ∈ Ωθ.

Definition 1. An estimator θ̂ of θ is said to be locally g-
unbiased at θ0 ∈ Ωθ if it satisfies

g(θ)E[θ̂ − θ] = g′(θ)E
[

(θ̂ − θ)2
]

(6)

at θ = θ0 + δ, ∀|δ| < ε, ε → 0.

Under continuity assumptions, the condition

d

dθ

(

g(θ)E[θ̂ − θ]
)

∣

∣

∣

∣

θ=θ0

=
d

dθ

(

g′(θ)E
[

(θ̂ − θ)2
]

)

∣

∣

∣

∣

∣

θ=θ0
(7)

is a necessary condition for an estimator to satisfy (6) at θ =
θ0 + δ, ∀|δ| < ε, ε → 0. For the sake of simplicity, in the

following we refer to an estimator θ̂ as a locally g-unbiased
estimator at θ0 ∈ Ωθ if it satisfies (7).

III. THE g-CRB

In this section, we derive a Cramér-Rao-type lower bound,
denoted by g-CRB, on the MSE of locally g-unbiased estima-
tors. In order to obtain a simple estimator-independent bound,
we select the weighting functions g such that the left hand side
of (7) equals zero. That is,

d

dθ

(

g(θ)E[θ̂ − θ; θ]
)

∣

∣

∣

∣

θ=θ0

= 0, (8)

where θ̂ is a locally g-unbiased estimator of θ at θ0 ∈ Ωθ. In
the following theorem we derive the proposed g-CRB.

Theorem 2. Let θ̂ be a locally g-unbiased estimator of θ at
θ0 ∈ Ωθ and assume that (8) and the following regularity
conditions are satisfied:

C.1) 0 < I(θ) < ∞, ∀θ ∈ Ωθ, where

I(θ)
△
= E

[

(

∂

∂θ
log fx(x; θ)

)2
]

(9)

is the Fisher information for estimating θ.
C.2) For any function h : Ωx × Ωθ → R, which is

differentiable w.r.t. θ:
∫

Ωx

∂
∂θ

{

h(x, θ)fx(x; θ)
}

dx = d
dθE

[

h(x, θ)
]

.

Then,
MSE

θ̂
(θ0) ≥ Bg−CRB(θ0), (10)

where

Bg−CRB(θ0)
△
=

1

I(θ0) +
(

g′(θ0)
g(θ0)

)2 . (11)

Equality in (10) is obtained iff

∂

∂θ
log

(

fx(x; θ)g(θ)
)

∣

∣

∣

∣

θ=θ0

=

(

I(θ0) +

(

g′(θ0)

g(θ0)

)2
)

(θ̂ − θ0). (12)
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Proof 2. The proof is based on using the Cauchy-Schwarz
inequality (see e.g. [40])

E
[

ǫ2(x, θ0)
]

≥
E2

[

ǫ(x, θ0)ηg(x, θ0)
]

E
[

η2g(x, θ0)
] , (13)

where ηg(x, θ)
△
= ∂

∂θ
log

(

fx(x; θ)g(θ)
)

and ǫ(x, θ)
△
= θ̂ − θ.

We substitute the condition in (8) in the right hand side of
(13) in order to obtain an estimator-independent bound. Due
to space limitations, the full proof is omitted. �

The proposed g-CRB is a valid lower bound on the MSE
of any estimator with function g that satisfies (8). It can be
seen from (11) that for any θ0, the g-CRB is lower than or

equal to the conventional CRB, BCRB(θ0)
△
= 1

I(θ0)
. Therefore,

the g-CRB is a valid bound on the MSE of mean-unbiased
estimators. For g(θ) = const, the g-CRB and CRB coincide,
∀θ ∈ Ωθ.

Let us denote the estimator that satisfies (12) as θ̂g,θ0 .
This estimator attains the g-CRB from (11) at θ0. The general
estimator that attains the g-CRB, ∀θ ∈ Ωθ, is denoted by

θ̂g,θ. In general, θ̂g,θ is a function of θ and therefore, is not

a practical estimator. However, in some cases θ̂g,θ is not a
function of θ and achieves the g-CRB, ∀θ ∈ Ωθ. In this

case, we replace θ̂g,θ with θ̂eff
g and refer to it as a g-efficient

estimator. In the following proposition, we show that in case
a g-efficient estimator exists, it is given by the PML estimator
[21]:

θ̂PML
g = arg max

θ∈Ωθ

{

log fx(x; θ) + log g(θ)
}

, (14)

where it is assumed that

∂

∂θ
log

(

fx(x; θ)g(θ)
)

∣

∣

∣

∣

θ=θ̂PML
g

= 0. (15)

Proposition 3. Assume that the regularity conditions C.1-C.2

and (15) are satisfied and that θ̂eff
g is a g-efficient estimator.

Then,
θ̂eff
g = θ̂PML

g , ∀x ∈ Ωx. (16)

Proof 3. By using (12), it can be seen that if there exists a

g-efficient estimator, θ̂eff
g , it satisfies

∂

∂θ
log

(

fx(x; θ)g(θ)
)

=
(

I(θ) +

(

g′(θ)

g(θ)

)2
)

(θ̂eff
g − θ), ∀θ ∈ Ωθ. (17)

Under Conditions C.1-C.2, by substituting θ = θ̂PML
g in (17)

and using (15), one obtains

θ̂eff
g − θ̂PML

g = 0, ∀x ∈ Ωx, (18)

which completes the proof. �

The relation between the g-efficient estimator and the
PML estimator in Proposition 3 is similar to the relation
between the efficient estimator and the ML estimator [41, p.
68]. In particular, for g(θ) = const, (18) is reduced to the
relation between the conventional efficient estimator and the
ML estimator [41, p. 68]. In the following section we choose
the weighting function such that a g-efficient estimator will be
locally g-unbiased.

IV. CHOOSING THE WEIGHTING FUNCTION

It can be seen that the g-CRB from (11) depends on the
weighting function, g. In order for the g-CRB to be practical,
we need to choose g such that the bound will be achievable or
closely approximated by a valid estimator, ∀θ ∈ Ωθ. In general,
we would like to consider a family of weighting functions for
which g-efficient estimators exist and then choose the efficient
estimator that results in the uniformly lowest g-CRB.

We use the local g-unbiasedness condition from (7) under
the assumption that a g-efficient estimator exists. The MSE of
the g-efficient estimator is equal to the g-CRB, ∀θ ∈ Ωθ. By
substituting the g-CRB from (11) in the right hand side of (7)
and using (8), one obtains

d

dθ









g′(θ)
1

I(θ) +
(

g′(θ)
g(θ)

)2









∣

∣

∣

∣

∣

∣

∣

∣

θ=θ0

= 0. (19)

We require that (19) is satisfied, ∀θ0 ∈ Ωθ and obtain an ODE
that g must satisfy in order to be a member of the family of
weighting functions to be considered:

g′(θ)− c

(

I(θ) +

(

g′(θ)

g(θ)

)2
)

= 0, c ∈ R. (20)

The ODE in (20) generates a number of valid weighting
functions. Given a valid weighting function g, we can attempt
to find a g-efficient estimator by substituting g in (12). In
case a g-efficient estimator cannot be found, we can consider
specific solutions of (20) and derive their corresponding g-
unbiasedness. If a g-unbiased estimator with weighting func-
tion g that satisfies (8), ∀θ0 ∈ Ωθ, can be found, then we
can examine this estimator’s proximity to the corresponding
g-CRB. It can be seen that g(θ) = const solves (20) for c = 0
and is always a valid weighting function. As stated in previous
sections, for g(θ) = const we return to the conventional mean-
unbiasedness and CRB. In the following section we will show
two examples in which the MSE can be reduced by using non-
constant weighting function and shrinkage estimators that are
shown to be g-unbiased estimators.

V. EXAMPLES

A. Example 1 -Variance estimation of a Gaussian process

We consider a set of N observations, xn, n = 1, . . . , N ,
that are independent identically distributed Gaussian random
variables with zero-mean and variance θ, where the variance,
θ ∈ R+, is the parameter to be estimated. In this case,
for g(θ) = g1(θ) = const we can obtain an efficient/MVU

estimator given by θ̂eff
g1

= 1
N

∑N
n=1 x

2
n. It can be shown that

g(θ) = g2(θ) = 1
θ

is also a valid solution of the ODE in
(20) and that we can find a g2-efficient estimator given by

θ̂eff
g2

= 1
N+2

∑N
n=1 x

2
n, which coincides with the PML estimator

from (14) with g = g2. This estimator also coincides with
the shrinkage estimator for this case and has the lowest MSE
among estimators with linear bias (see [16], [17]).

In Fig. 1, the MSEs of θ̂eff
g1

and θ̂eff
g2

are evaluated by using

106 Monte-Carlo simulations and presented versus the number

of observations, N , for θ = 4. The estimator θ̂eff
g1

is compared
to the g1-CRB, which coincides with the conventional CRB in
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this case, while the estimator θ̂eff
g2

is compared to the g2-CRB.
The MSEs of the estimators and the corresponding bounds
are normalized by the CRB. We denote the normalized MSE
by NMSE. It can be seen that both estimators achieve their

associated bounds and that θ̂eff
g2

has a lower NMSE for any N .

Finally, the NMSE of θ̂eff
g2

approaches the NMSE of θ̂eff
g1

as N
grows.

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N

N
M
S
E θ̂

eff
g1

Bg1−CRB

θ̂
eff
g2

Bg2−CRB

Fig. 1. Variance estimation of a Gaussian process: The NMSEs of the gi-
efficient estimators compared to the normalized gi-CRB, i = 1, 2, where the
normalization is by the CRB.

B. Example 2 - Parameter estimation with nonlinear model
and additive Gaussian noise

We consider parameter estimation with additive white
Gaussian noise, according to the following observation model:

xn = a(θ) + un, n = 1, . . . , N, (21)

where the sequence u1, . . . , uN is white Gaussian noise with
known variance, σ2

u , a(θ) = log θ, and θ ∈ R+ is the parameter
to be estimated. This model is used for distance estimation
from received signal strength [42], [43]. It can be shown that
g(θ) = 1

θ
is a valid solution of the ODE in (20). For this

choice of weighting function there is no g-efficient estimator.
However, we show in the following that we can find a g-
unbiased estimator, for which g(θ) = 1

θ
satisfies (8). This

estimator is also uniformly optimal in terms of MSE among
a set of estimators, which are given by a scale of the MVU
estimator.

It is shown in [42] that the MVU estimator for this case

exists and is given by θ̂MVU = e
1

N

∑N
n=1

xn−
1

2

σ2
u

N . We will

consider estimators of the form cθ̂MVU that have a linear bias,
(c−1)θ. It can be shown that the weighting function g(θ) = 1

θ
satisfies (8) for these estimators. Thus, the corresponding

g-CRB, Bg−CRB(θ)
△
=

θ2σ2

u

N+σ2
u

is a valid bound for their

MSE. It is shown in [42] that the ML estimator is equal to

θ̂ML = e
1

2

σ2
u

N θ̂MVU and that the minimum MSE estimator of the

form cθ̂MVU, is given by θ̂copt
= e−

σ2
u

N θ̂MVU . For g(θ) = 1
θ

,
the g-unbiasedness is reduced to the following condition [2, p.
171]

E[θ̂2 − θθ̂] = 0, ∀θ ∈ Ωθ. (22)

By substituting the general estimator cθ̂MVU in (22), it can

be verified that θ̂copt
is the unique g-unbiased estimator among

estimators of the form cθ̂MVU. It is worth noting that unlike the
CRB that grows linearly in σ2

u [42], the g-CRB with g(θ) = 1
θ

is bounded by θ2, similar to the MSE of θ̂copt
[42].

In Fig. 2, the NMSEs of θ̂ML, θ̂MVU, and θ̂copt
, are evaluated

using 106 Monte-Carlo simulations and presented versus the
number of observations, N , for θ = e2, σ2

u = 3.5. These
estimators are compared to the normalized CRB and the
normalized g-CRB with g(θ) = 1

θ
, where the normalization

is by the CRB. It can be seen that θ̂copt
achieves lower NMSE

than the normalized CRB and that the normalized g-CRB is
valid for all of the considered estimators.

10
1

10
2

0

1

2

3

4

5

6

7

N

N
M
S
E

θ̂ML

θ̂MVU
BCRB

θ̂copt
Bg−CRB

Fig. 2. Parameter estimation with nonlinear model and additive Gaussian

noise: The NMSE’s of θ̂ML, θ̂MVU, and θ̂copt compared to the normalized

CRB and the normalized g-CRB, where g(θ) = 1

θ
and the normalization is

by the CRB.

VI. CONCLUSION

In this paper, we propose a new approach for estimation
under the MSE risk. In this approach, by multiplying the MSE
risk by a weighting function, we obtain a new unbiasedness
definition, called g-unbiasedness, that stems from Lehmann’s
definition of unbiasedness. The g-unbiasedness is reduced to
the conventional mean-unbiasedness for a constant g. By re-
stricting the weighting function, we derive a new Cramér-Rao-
type bound on the MSE of g-unbiased estimators. This Cramér-
Rao-type bound is equal to or lower than the conventional
CRB. By using the local g-unbiasedness condition we obtain
a family of weighting functions to be considered, which are
solutions to an ODE. It is shown that our method can lead to
estimators that uniformly outperform the conventional MVU
estimator. In particular, in some cases the PML estimator
with an appropriate choice of penalizing function achieves the
proposed bound. A topic for future research is developing a
method to choose the ODE solution, among the family of
solutions, which is optimal in terms of MSE. Another topic
is to extend our general approach to vector parameters and to
general Barankin-type lower bounds [44], [45].
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