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ABSTRACT
Analog-to-digtial (A/D) conversion plays a crucial role when
it comes to the design of energy-efficient and fast signal pro-
cessing systems. As its complexity grows exponentially with
the number of output bits, significant savings are possible
when resorting to a minimum resolution of a single bit. How-
ever, then the nonlinear effect which is introduced by the A/D
converter results in a pronounced performance loss, in par-
ticular for the case when the receiver is operated outside the
low signal-to-noise ratio (SNR) regime. By trading the A/D
resolution for a moderately faster sampling rate, we show that
for time-of-arrival (TOA) estimation under any SNR level it
is possible to obtain a low-complexity 1-bit receive system
which features a smaller performance degradation then the
classical low SNR hard-limiting loss of 2/π (−1.96 dB). Key
to this result is the employment of a lower bound for the
Fisher information matrix which enables us to approximate
the estimation performance for coarsely quantized receivers
with correlated noise models in a pessimistic way.

Index Terms— 1-bit ADC, channel estimation, Cramér-
Rao lower bound, Fisher information matrix, hard limiter,
maximum-likelihood estimator, oversampling, quantization
loss, synchronization, time-of-arrival estimation

1. INTRODUCTION

When it comes to the design of signal processing systems,
it has been recently understood that A/D conversion forms a
bottleneck at the receiver with respect to its power consump-
tion and hardware complexity [1]. Therefore, in contrast to
classical works on hard-limiting which where aiming at the
minimization of the digital processing complexity [2, 3], to-
day the topic of 1-bit quantization has found a vital revival
due the necessity of reducing the analog sensing complexity
[4]-[13]. This shift of attention to the analog sensor front-
end is a consequence of Moore’s law. While in the last four
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decades the computational capability per integrated circuit
has approximately doubled every two years, the technologi-
cal progress with respect to analog sensor hardware is much
slower. Therefore, in the last years the design of receivers
with low-complexity 1-bit A/D conversion has been empha-
sized within the signal processing and communication com-
munity in order to meet the requirements of future wireless
systems and standards which feature high signal bandwidth
[14] and massive antenna arrays [15]-[17].

Although 1-bit A/D conversion at the receiver is usually
associated with a performance loss of more than −1.96 dB
[3], in this work we show that trading the resolution for a
moderately higher sampling rate allows to design 1-bit sys-
tems which outperform this classical benchmark for specific
signal processing tasks. Obtaining this result requires to ana-
lyze the estimation accuracy with hard-limited Gaussian sig-
nal models featuring noise correlation. For such models the
exact analytic representation of the likelihood function is an
open mathematical problem [18, 19]. Here we circumvent
this obstacle by a lower bound for the Fisher information
measure [20] [21], resulting in a conservative approximation
of the classical Cramér-Rao lower bound (CRLB) [22, 23].
Based on it, we visualize the asymptotic TOA estimation per-
formance which can be achieved in different SNR scenarios
with measurement data from hard-limiting receive sensors.
Note that TOA estimation is a fundamental channel estima-
tion problem with application in radar [24], radio-based posi-
tioning and synchronization [25].

2. SYSTEM MODEL

We assume a real-valued analog receive signal of the form

y̆(t) = γx̆(t− τ) + η̆(t), (1)

with x̆(t) being a periodic pilot signal of structure

x̆(t) =

+∞∑
k=−∞

[c](1+mod(k,M))ğ(t− kTc), (2)

where c ∈ {−1, 1}M is a binary sequence with M elements
and a chip frequency fc = 1

Tc
. The duration of one pilot pe-

riod is To = MTc. For simplicity we assume that the transmit
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pulse is rectangular and band-limited to the bandwidth B,

ğ(t) =
Si
(

2πB
(
t+ Tc

2

))
− Si

(
2πB

(
t− Tc

2

))
π
√
Tc

, (3)

where we use the definition

Si(x) =

∫ x

0

sin(u)

u
du. (4)

The parameter γ ∈ R is associated with the attenuation and
τ ∈ R with the time-delay of the propagation channel. The
analog sensor signal y̆(t) is filtered by an ideal low-pass filter

H(ω) =

{
1 if |ω| ≤ 2πB

0 else
(5)

with bandwidth B, such that the analog receive signal is

y(t) = y̆(t) ∗ h(t)

= γx(t− τ) + η(t). (6)

Assuming white Gaussian noise η̆(t) with constant power
spectral density N0

2 , the temporal auto-correlation function of
the additive noise after low-pass filtering

r(t) =

∫ ∞
−∞

η(α)η(α− t)dα, (7)

can be characterized by the inverse Fourier transform

r(t) =
1

2π

∫ ∞
−∞

N0

2
|H(ω)|2 e−jωtdω

= BN0 sinc (2Bt), (8)

where the sinc function is defined

sinc(x) =
sin (πx)

πx
. (9)

In the following we normalize the receive model such that

1

To

∫ To

0

|x(t)|2dt = 1 (10)

and BN0 = 1. Therefore, the attenuation parameter

γ =
1√
BN0

=
√

SNR (11)

stands in relation to the receive SNR. The analog sensor signal
y(t) is discretized in time at a sampling frequency of fs = 1

Ts
,

such that the digital receive signal

y = γx(τ) + η, (12)

with y,x(τ),η ∈ RN and vector entries

[y]i = y
(
(i− 1)Ts

)
, (13)

[x(τ)]i = x
(
(i− 1)Ts − τ

)
, (14)

[η]i = η
(
(i− 1)Ts

)
, (15)

is obtained. Due to the form of the noise auto-correlation
function (8), the entries of the normalized covariance matrix

Rη = Eη
[
ηηT

]
(16)

are given by

[Rη]ij = sinc (2BTs |i− j|). (17)

It is observed that white noise, i.e., Rη = IN , is only ob-
tained if the relation fs = 2B between the sampling rate and
the receive filter bandwidth is satisfied exactly. For conve-
nience, in the following we write the receive signal model

y = s(θ) + η (18)

and summarize the channel parameters by

θ =
[
γ τ

]T
. (19)

In order to model a receiver with low-complexity 1-bit A/D
conversion we use

z = sign (y), (20)

where sign (·) is the element-wise signum function. Note
that (20) models an A/D conversion without feedback loop.
This separates low-complexity 1-bit A/D conversion from the
sigma-delta modulation approach, where a single comparator
with feedback is operated in a highly oversampled mode [26].

3. CHANNEL ESTIMATION PERFORMANCE

The signal processing task considered here is to calculate the
maximum-likelihood (ML) estimate of the parameters

θ̂(z) = arg max
θ∈Θ

ln p(z;θ) (21)

from the hard-limited receive signal (20). When analyzing the
achievable accuracy with the procedure (21), we use the ideal
system (18) as a benchmark, for which the ML estimator is
calculated from the unquantized receive signal

θ̂(y) = arg max
θ∈Θ

ln p(y;θ). (22)

For unbiased processing algorithms the performance is in
general lower bounded by the CRLB [22, 23]

Ez;θ

[(
θ̂(z)− θ

)(
θ̂(z)− θ

)T] � F−1z (θ), (23)

Ey;θ

[(
θ̂(y)− θ

)(
θ̂(y)− θ

)T] � F−1y (θ), (24)

where the Fisher information matrices are defined [27]

F z(θ) = Ez;θ

[(
∂ ln p(z;θ)

∂θ

)T
∂ ln p(z;θ)

∂θ

]
, (25)

F y(θ) = Ey;θ

[(
∂ ln p(y;θ)

∂θ

)T
∂ ln p(y;θ)

∂θ

]
. (26)
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Note that asymptotically the ML estimators (21) and (22) are
unbiased and obtain equality in (23) and (24) [28]. While for
the ideal receiver, with

∂s(θ)

∂θ
=
[
∂s(θ)
∂γ

∂s(θ)
∂τ

]
=
[
x(τ) γ ∂x(τ)∂τ

]
(27)

and [
∂x(τ)

∂τ

]
i

= −dx(t)

dt

∣∣∣
t=(i−1)Ts−τ

, (28)

the Fisher information measure is obtained simply by

F y(θ) =

(
∂s(θ)

∂θ

)T

R−1η
∂s(θ)

∂θ
, (29)

for the model with hard-limiting (20), the likelihood function
p(z;θ) required in (25) is non-trivial for cases where N > 4.
This is due to the fact that the characterization of the orthant
probability (multivariate version of the Q-function) is in gen-
eral an open mathematical problem [19]. Therefore, we em-
ploy a lower bound for the Fisher information matrix [20] [21]

F z(θ) � F̃ z(θ) (30)

with

F̃ z(θ) =

(
∂µφ(θ)

∂θ

)T

R−1φ (θ)

(
∂µφ(θ)

∂θ

)
, (31)

where the required mean and covariance are

µφ(θ) = Ez;θ [φ(z)] , (32)

Rφ(θ) = Ez;θ

[
φ(z)φT(z)

]
− µφ(θ)µT

φ(θ), (33)

while φ(z) : RN → RL is an arbitrary transformation. Note
that the information bound (30) can be derived after replacing
the likelihood p(z;θ) by an equivalent model p̃(z;θ) within
the exponential family [29]. Here we use identity φ(z) = z,
such that (32) can be calculated element-wise by [30]

[µz(θ)]i = p
(
[z]i = 1;θ

)
− p
(
[z]i = −1;θ

)
= 1− 2 Q

(
[s(θ)]i√

[Rη]ii

)
(34)

with Q (·) denoting the Q-function

Q (x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du. (35)

For the covariance matrix (33), the diagonal elements are

[Rz(θ)]ii = 1− [µz(θ)]2i , (36)

while the off-diagonal entries are calculated

[Rz(θ)]ij = 4Ψij(θ)−
(
1− [µz(θ)]i

)(
1− [µz(θ)]j

)
,

(37)

where Ψij(θ) is the cumulative density function (CDF) of the
bivariate Gaussian distribution

N

([
0
0

]
,

[
[Rη]ii [Rη]ij
[Rη]ji [Rη]jj

])
, (38)

with upper integration border
[
−[s(θ)]i −[s(θ)]j

]T
. With

∂Q (x)

∂x
= − 1√

2π
exp

(
−x

2

2

)
, (39)

the derivative of (34) is found element-wise[
∂µz(θ)

∂θ

]
ij

=
2 exp

(
− s2i (θ)

2[Rη ]ii

)
√

2π[Rη]ii

[
∂s(θ)

∂θ

]
ij

. (40)

The performance gap between the ideal receiver (22) and the
1-bit system (21) with respect to the estimation of both chan-
nel parameters γ and τ can be characterized by the ratios

χγ(θ) =

[
F−1y (θ)

]
11[

F̃
−1
z (θ)

]
11

, (41)

χτ (θ) =

[
F−1y (θ)

]
22[

F̃
−1
z (θ)

]
22

. (42)

4. RESULTS

For visualization of the results, we consider a GPS-like setup
[31], with M = 1023 random binary pilot symbols and a
chip frequency fc = 1

Tc
= 1.023 MHz, such that the sym-

bol duration is Tc = 977.52 ns and To = 1 ms. The sam-
pling rate is set to fs = 2Bκ with the oversampling factor
κ ≥ 1 while the one-sided bandwidth of the analog pre-filter
is fixed to B = 1.023 MHz. For the case κ = 1 this setup
results in N = 2046 digital receive samples. Fig. 1 shows
the 1-bit quantization loss (41) for the attenuation parameter
γ as a function of the oversampling factor κ in three different
SNR scenarios. Without oversampling, i.e., κ = 1, the clas-
sical result of −1.96 dB is obtained for the low SNR regime
(SNR = −24.0 dB), while the loss is more pronounced at
higher SNR values. Oversampling the receive signal allows
to recover approximately 1 dB of the initial quantization loss
in all considered SNR scenarios. For example, for the setup
with SNR = −24.0 dB the loss in accuracy reduces to −0.98
dB by oversampling with κ = 5. A similar effect is observed
for the medium SNR setting (SNR = 0.0 dB) where oversam-
pling allows to diminish the performance gap from −3.97 dB
to −2.62 dB by sampling at a higher rate. Note that the ideal
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Fig. 1. Performance γ̂(z) vs. Oversampling κ

receive system (22) does not benefit from oversampling as,
due to the sampling theorem [32], the analog receive signal
y(t) can be reconstructed without error from the samples y
for all configurations with κ ≥ 1.
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Fig. 2. Performance τ̂(z) vs. Oversampling κ

An interesting result is obtained when analyzing the 1-
bit quantization loss (42) for the time-delay parameter τ as a
function of the oversampling factor κ (see Fig. 2). While for
the low SNR regime the time-delay accuracy loss (42) shows
a behavior similar to the performance gap of the attenuation
parameter γ, in the medium SNR regime we observe a signif-
icant performance improvement when oversampling the re-
ceive signal. In the medium SNR situation where SNR = 0.0
dB, the initial 1-bit quantization loss without oversampling
is −2.70 dB while with oversampling with κ = 5 a gap of

only−0.99 dB is reached. Taking into account that the power
dissipation PADC(b, fs) of an ADC scales

PADC(b, fs) ≈ βADC(2b − 1)fs, (43)

where βADC is a constant dependent on the particular ADC
technology and b the output resolution, it can be concluded
that the 1-bit receiver can be operated at κ = 3 with a hard-
ware complexity similar to a 2-bit ADC running at κ = 1.
Note that this is a conservative statement as in comparison to
a 2-bit converter the low-complexity 1-bit ADC does not re-
quire an automatic gain control (AGC). From Fig. 2 we can
therefore see that the 1-bit TOA loss can be made smaller than
−1.10 dB independently of the SNR, when normalizing to the
same A/D complexity. This is significantly less than the clas-
sical benchmark of −1.96 dB and shows that oversampling
is a simple but effective approach in order to compensate the
loss introduced by a low-complexity 1-bit ADC.

5. CONCLUSION

We have analyzed the channel estimation performance when
A/D conversion with an output resolution of a single bit is per-
formed at the receiver. With a pessimistic approximation of
the Fisher information measure, an asymptotic performance
analysis based on the classical CRLB was presented which
includes the case where oversampling is used and the signal
model therefore exhibits correlated noise. The obtained re-
sults show that in particular the accuracy of the TOA chan-
nel parameter can be significantly increased through over-
sampling. This confirms that low-complexity 1-bit A/D con-
version at the receiver is an interesting system design option
for future wireless systems, in particular for applications like
radar, radio-based positioning and synchronization which re-
quire a high-resolution estimate of the TOA channel parame-
ter at small hardware cost.

6. REFERENCES

[1] R. H. Walden, “Analog-to-digital converter survey and
analysis,” IEEE J. Sel. Areas Commun., vol. 17, no. 4,
pp. 539–550, Apr. 1999.

[2] W. R. Bennett, “Spectra of quantized signals,” Bell Sys-
tem Technical Journal, vol. 27, pp. 446–472, 1948.

[3] J. H. Van Vleck and D. Middleton, “The spectrum of
clipped noise,” Proc. IEEE, vol. 54, no. 1, pp. 2–19, Jan.
1966.

[4] A. Host-Madsen, P. Handel, ”Effects of sampling and
quantization on single-tone frequency estimation,” IEEE
Trans. Signal Process., vol. 48, no. 3, pp. 650–662, Mar.
2000.

4494



[5] O. Bar-Shalom and A. J. Weiss, “DOA estimation using
one-bit quantized measurements,” IEEE Trans. Aerosp.
Electron. Syst., vol. 38, no. 3, pp. 868–884, July 2002.

[6] O. Dabeer, J. Singh, and U. Madhow, “On the limits
of communication performance with one-bit analog-to-
digital conversion,” Proc. SPAWC 2006, July 2006, pp.
1–5.

[7] O. Dabeer and A. Karnik, “Signal parameter estimation
using 1-bit dithered quantization,” IEEE Trans. Inf. The-
ory, vol. 52, no.12, pp. 5389–5405, Dec. 2006.
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