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ABSTRACT

In statistics, the concept of a concomitant, also called theinduced or-
der statistic, arises when one sorts the members of a random sample
according to corresponding values of another random sample. In-
deed, multivariate order statistics induced by the ordering of linear
combinations of the components arises naturally in many instances.
As a contribution, we provide a general second-order statistical pre-
diction of concomitant of order statistics for multivariate normal dis-
tribution, generalizing earlier works. We exemplify its usefulness in
parametric inference via two examples related to deterministic and
Bayesian estimation.

Index Terms— Multivariate normal distribution, Order statis-
tics, Concomitants, Parametric Inference, Mean Square Error

1. INTRODUCTION

The ordered values of a sample of observations are called theorder
statistics of the sample: ifθT = (θ1, . . . , θM )1 is a vector ofM
real valued random variables, thenθ(M) =

(
θ(1), . . . , θ(M)

)T
de-

notes the vector of order statistics induced byθ whereθ(1) ≤ θ(2) ≤
. . . ≤ θ(M) [1]. Order statistics and extreme values are among the
most important functions of a set of random variables in probabil-
ity and statistics. There is natural interest in studying the highs and
lows of a sequence, and the other order statistics help in understand-
ing concentration of probability in a distribution. Order statistics
are also useful in statistical inference, where estimates of parameters
can be based on some suitable functions of the order statistics vector
(robust location estimates, detection of outliers, censored sampling,
characterizations and goodness of fit....) [1] or be implicitly ordered
as in maximum likelihood estimation for parametric inference (see
Section 3 and [2]). Since there is no direct extension of order con-
cept to multivariate random variables, the extension of procedure
based on order statistics to such situations is inapplicable. However,
if we consider a random sample arising from a bivariate distribu-
tion {(s1, θ1) , . . . , (sM , θM )}, ordering of the values recorded on
the first variables generates a set of random variables associated
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1The n-th coordinate of the column vectora is denoted byan or (a)n.
The n-th row and m-th column element of the matrixA is denoted by
An,m or (A)n,m. If A = [a1 . . . aM ], then vA , vec (A) =
(

aT
1 , , . . . ,aT

M

)T . 1M denotes theM -dimensional column vector with all
components set to1. IM ∈ R

M×M denotes the identity matrix.P (A)
and1{A} denote the probability and the indicator function of an event A.
E [g (y)] =

∫

g (y) p (y) dy denotes the statistical expectation of the vec-
tor of functionsg ( ) with respect to the random vectory.

with the correspondingθ variate [3]. These random variables ob-
tained due to the ordering of theθ’s are known as the concomitants
of order statisticss(M) and are denotedθT

[M] =
(
θ[1], . . . , θ[M]

)
.

Hence the general concept of a concomitant in statistics, also called
the induced order statistic, arising when one sorts the members of
a random sample according to corresponding values of another ran-
dom sample [1]. In that perspective, a generalization of thebivariate
case, where the sample{θ1,θ2, . . . ,θM} consists ofM multivari-
ate random variables, is obtained by resorting to a linear combination
of the formsT =

(
θT
1 a, . . . ,θ

T
Ma
)
. Then the ordering of the sam-

ple s, i.e. s(M), induces the associate ordering of random vectors
θ[m], i.e. Θ[M] =

[
θ[1] . . . θ[M]

]
[1]. Multivariate order statistics

induced by the ordering of linear combinations of the components
arises naturally in many instances. For example, in the evaluation
of the performance of students in a course, the final grade maybe
a weighted average of the scores in a mid-term test and the final
examination. Other interesting examples arise in hydrology while
analyzing extreme lake levels [4], in biological selectionproblem
[5], ocean engineering [6], development of structural designs [7].
Therefore, the need to characterize the order statistics and their con-
comitants has led to a large body of work summarized in [1][8][9].
A fairly general second-order statistical prediction of concomitants
of ordered multivariate normal distribution has been givenin [4] and
[10] for the situation in which the random vectorsθm are indepen-
dent. Unfortunately the situation where vectorsθm are independent
is not the common situation in many instances of the setting under
consideration (see section 3).

Therefore, as a contribution, we provide the most general
second-order statistical prediction of order statistics and their con-
comitants for multivariate normal distribution, whateverthey are
dependent or independent. These closed forms generalize the earlier
work from [4] and [10].
We exemplify their usefulness in parametric inference. Indeed, the
asymptotic performance analysis of the mean square error (MSE)
of maximum likelihood estimators (MLEs) can be refined by the
study of concomitants of ordered estimates (generalizing the single
unknown parameter case addressed in [2]). In Kalman filtering for
linear discrete state-space models, concomitants of ordered esti-
mates can be used to monitor the range of the states vector.

2. STATISTICAL PREDICTION OF CONCOMITANTS OF
ORDERED MULTIVARIATE NORMAL DISTRIBUTION

Let us consider the observation ofM random Gaussian vectors with
P components:{θm}M

m=1. The vector gathering thePM Gaussian
random variables is denoted byvΘ whereΘ = [θ1 . . . θM ] ∈
MR (P,M), and:
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v
T
Θ =

(
θ
T
1 , . . . ,θ

T
M

)
, vΘ ∼ NPM

(
µ

vΘ
,CvΘ

)
, (1)

µ
vΘ

=





µθ1

...
µθM



 , CvΘ
=




Cθ1,θ1 . . . Cθ1,θM

...
. . .

...
CθM ,θ1 . . . CθM ,θM





As in [4], let us consider the followingM -dimensional vector:

s =
(
θ
T
1 a, . . . ,θ

T
Ma
)T

= Θ
T
a, a ∈ MR (P, 1) , (2a)

then, the concomitants ofs(M) =
(
s(1), . . . , s(M)

)
are defined as:

Θ[M] =
[
θ[1] . . . θ[M]

]
| θ[m] = θm′ ⇔ s(m) = sm′ . (2b)

Let {d1, ...,dM} be theM -dimensional unit basis vectors; then:

θ[m] = vec
(
Θ[M]dm

)
= SmvΘ[M]

, Sm = d
T
m ⊗ IP , (3a)

E
[
θ[m]

]
= SmE

[
vΘ[M]

]
, Cθ[m],θ[m′]

= SmCvΘ[M]
S
T
m′ .

(3b)

In other words, the first and second order statistical prediction of{
θ[1], . . . ,θ[M]

}
derive from the first and second order statistical

prediction ofvΘ[M]
, which is introduced in this section. First, note

thats(M) ∈ Per(s), wherePer(s) = {si = Pis; i = 1, . . . ,M !}
is the collection of random vectorssi corresponding to theM ! differ-
ent permutations of the components ofs. HerePi ∈ R

M×M are per-
mutation matrices withPi 6= Pj for all i 6= j. Let∆ ∈ R

(M−1)×M

be the difference matrix such that∆s = (s2−s1, s3−s2, ..., sM −
sM−1)

T , i.e., themth row of∆ isdT
m+1 −dT

m, m = 1, ...,M − 1.
Let Si = {s : ∆si ≥ 0} where si ∼ NM

(
µ

si
,Csi

)
, µ

si
=

Piµs
, Csi

= PiCsP
T
i . As the set of events{Si}M!

i=1 is a parti-
tion ofRM , whatever the vector of real valued functionsf ( ), by the
theorem of total probability we have:

E
[
f
(
vΘ[M]

)]
=
∑M!

i=1 E
[
f
(
vΘ[M]

)
|Si

]
P (Si)

E
[
f
(
vΘ[M]

)]
=
∑M!

i=1 E [f (vΘi
) |Si]P (Si) (4a)

whereΘi = ΘPT
i . However, from a computational point of view,

it is wiser to express (4a) as:

E
[
f
(
vΘ[M]

)]
=
∑M!

i=1 E [f (vΘi
) |Ui]P (Ui) (4b)

where Ui = {ui : ui ≥ −∆iµs
} and ui = ∆i (s− µs

) ∼
NM−1

(
0,∆iCs∆

T
i

)
, ∆i = ∆Pi. As [1]:

ξi =

(
ui

vΘi

)
∼ N(M−1)+MP

(
µξi

,Cξi

)
, (5a)

µξi
=

(
0

µ
vΘi

)

, Cξi =

[
Cui

Cui,vΘi

CT
ui,vΘi

CvΘi

]

, (5b)

wherevΘi
= (Pi ⊗ IP )vΘ, therefore:

E [f (vΘi
) |Ui] = E [E [f (vΘi

) |ui] |Ui]

and (4b) can be finally rewritten as:

E
[
f
(
vΘ[M]

)]
=
∑M!

i=1 E [E [f (vΘi
) |ui] |Ui]P (Ui) (6)

In particular:

µ
vΘ[M]

= E
[
vΘ[M]

]
=
∑M!

i=1 E [E [vΘi
|ui] |Ui]P (Ui) (7a)

CvΘ[M]
=
∑M!

i=1 E
[
E
[
vΘi

v
T
Θi

|ui

]
|Ui

]
− µ

vΘ[M]
µ

T
vΘ[M]

(7b)

where:

E [vΘi
|ui] = µ

vΘi

+C
T
ui,vΘi

C
−1
ui

ui (7c)

CvΘi
|ui

= CvΘi
−C

T
ui,vΘi

C
−1
ui

Cui,vΘi
(7d)

E
[
vΘi

v
T
Θi

|ui

]
= CvΘi

|ui
+ E [vΘi

|ui]E [vΘi
|ui]

T (7e)

Then a smart exploitation of (7a-7e) yields [12]:

µ
vΘ[M]

=
M!∑
i=1

(
µ

vΘi

Pi +C
T
ui,vΘi

C
−1
ui

ei

)
(8a)

CvΘ[M]
=

M!∑
i=1

(
CvΘi

|ui
+ µ

vΘi

µ
T
vΘi

)
Pi (8b)

+
M!∑
i=1

(
µ

vΘi

e
T
i C

−1
ui

Cui,vΘi
+C

T
ui,vΘi

C
−1
ui

eiµ
T
vΘi

)

+
M!∑
i=1

(
C

T
ui,vΘi

C
−1
ui

RiC
−1
ui

Cui,vΘi

)
− µ

vΘ[M]
µ

T
vΘ[M]

where:

Pi = P (Ui) , ei = E
[
ui1{Ui}

]
, Ri = E

[
ui (ui)

T 1{Ui}

]
,

CvΘi
|ui

= CvΘi
−C

T
ui,vΘi

C
−1
ui

Cui,vΘi
,

µ
vΘi

= (Pi ⊗ IP )µvΘ
, CvΘi

= (Pi ⊗ IP )CvΘ

(
P

T
i ⊗ IP

)
,

Cui
= ∆iCs∆

T
i , Cs =

(
IM ⊗ a

T
)
CvΘ

(IM ⊗ a) ,

Cui,vΘi
= ∆iCs,vΘ

(
P

T
i ⊗ IP

)
, Cs,vΘ

=
(
IM ⊗ a

T
)
CvΘ

.

As shown in [2],{Pi, ei,Ri}M!
i=1 can be computed by resorting to

algorithms proposed by Genz [1] for numerical evaluation ofmulti-
variate normal distributions and moments over domains included in
[−10, 10]M . Note that the use of (3b) in conjunction with (8a-8b)
yields a generalization of [2] obtained forP = 1 anda , a = 1.
The correctness of expressions (8a) and (8b) can be checked (see
Appendix) by inspection of the case where the column vectorsof
matrixΘ are i.i.d., which has been addressed in [4].
In the two sources case,Θ = [θ1 θ2] ∈ MR (P, 2) and:

µ
vΘ

=

(
µ1 , µθ1

µ2 , µθ2

)
,CvΘ

=

[
C1 , Cθ1 C1,2 , Cθ1,θ2

CT
1,2 C2 , Cθ2

]
.

Moreover û1 = −û2, P1 + P2 = 1, e1 − e2 = E [û1] = 0,
R1 +R2 = E

[
û2
1

]
= σ2

û = aT (C1 +C2 − 2C1,2)a, leading to:

Cθ[m]
= E

[
θ[m]θ

T
[m]

]
− E

[
θ[m]

]
E
[
θ[m]

]T
, (9)

E
[
θ[m]

]
= µm + (−1)m−1

(
(µ2 − µ1)P2 +

a1+a2

σ2
û

e2
)
,

E
[
θ[m]θ

T
[m]

]
= Cm + µmµ

T
m

+(−1)m−1
(
C2 −C1 + µ2µ

T
2 − µ1µ

T
1 − a2a

T

2 −a1a
T

1

σ2
û

)
P2

+(−1)m−1
(

a1µ
T

1 +µ1a
T

1 +a2µ
T

2 +µT

2 a
T

2

σ2
û

e2 +
a2a

T

2 −a1a
T

1

σ4
û

R2

)
,

wherea1 = (C1,2 −C1) a anda2 =
(
CT

1,2 −C2

)
a.

4482



3. APPLICATION TO PARAMETRIC INFERENCE

3.1. Maximum likelihood estimation

The ongoing success of ML estimators (MLEs) originates fromthe
fact that, under reasonably general conditions on the probabilistic
observation model [13][14], the MLEs are, in the limit of large sam-
ple support, Gaussian distributed and efficient. Additionally, if the
observation model is Gaussian, some additional asymptoticregions
of operation yielding, for a subset of MLEs, Gaussian distributed
and efficient estimates, have also been identified at finite sample sup-
port [15][16][17][18][19]. However, many estimation problems are
actually unidentifiable unless they are regularized by imposing the
ordering of some unknown parameters. For illustration purposes, let
us considerL independent observations of the linear model [11]:

y (l) = H (Θ)x (l) + v (l) , 1 ≤ l ≤ L, (10)

wherey (l) is the vector of samples of sizeN , M is the number
of signal sources,x (l) is the vector of complex amplitudes of the
M sources for thelth observation,Θ = [θ1 . . . θM ], H (Θ) =
[h (θ1) . . . h (θM )] andh ( ) is a vector ofN parametric functions
depending on a vector ofP unknown parametersθ ∈ Ω ⊂ R

P ,v (l)
are complex noises independent of theM sources. Since (10) is in-
variant over permutation of signal sources amplitudex (l), (10) is
an unidentifiable estimation problem which is regularized by impos-
ing the ordering of the unknown parameters{θm}M

m=1. A straight-
forward ordering of{θm}Mm=1 arises in the computation of MLEs
which requires a multidimensional non linear optimizationfor which
analytical solutions are in general not available. For instance, if (10)
is a Gaussian conditional model [11][15]:

Θ̂ =
[
θ̂1 . . . θ̂M

]
= argmax

Θ

{
L∑

l=1

y (l)H ΠH(Θ)y (l)

}
, (11)

whereΠA = A
(
AHA

)−1
AH . Therefore one has to resort to

numerical search techniques, generally compatible with computer
programming, such as the conversion of aPM -dimensionnal search
grid overΩM into a 1-dimensionnal search grid. For instance, in
Matlab, this is done by the sub2ind.m function which returnsthe lin-
ear index equivalents to the specified subscripts for each dimension
of anN -dimensional array. For example, ifP = 2 andθ ∈ Ω =
[a1, b1]× [a2, b2], one can generate a rectangular search grid overΩ
[11]:

G =

{(
a1 + i1δ1
a2 + i2δ2

)
,

∣∣∣∣∣
δ1 = b1−a1

I1
, 0 ≤ i1 ≤ I1

δ2 = b2−a2
I2

, 0 ≤ i2 ≤ I2

}
(12)

and convert eachθ ∈ G into an equivalent linear search index
s = i1 + (I1 + 1) i2. Therefore, in practice (11) becomesŝ =

argmax
s

{∑L

l=1 y (l)H ΠH(Θ(s))y (l)
}

and the issue of model

identifiability is solved by orderings yielding ŝ(M). If δ1 andδ2 are
small enough, thens ≃ θTa−s0 whereaT = (1/δ1, (I1 + 1) /δ2)
ands0 = a1/δ1 + (I1 + 1) a2/δ2. Then, since the ordering does
not depend ons0, Θ̂ = Θ

(
ŝ(M)

)
are induced order statistic of

ŝ(M) (2b), that is concomitants of̂s(M).
Therefore, the asymptotic performance analysis of the MSE of
MLEs2 can be refined by the study of concomitant of ordered multi-
variate normal distribution.

For illustration purposes, let us consider a radar system consist-

2This refinement is applicable to any other estimators, such as M-
estimators, Bayesian estimators (MAP, MMSE), as long as their distribution
is normal multivariate
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Fig. 1. Empirical and theoretical MSE to CRB ratio versus SNR

ing of a 1-element antenna array receiving scaled, timedelayed,
and Doppler-shifted echoes of a known complex bandpass signal
e (t) e−j2πfct, wherefc is the carrier frequency. A standard obser-
vation model of a radar antenna receiving a pulse train ofI pulses of
durationδt0 and bandwidthB, with a pulse repetition intervalδt is
given by (10) where [20]L = 1, N = ⌊δt/B⌋, θT = (τ, ω),

h (θ) = ψ (ω) ⊗ φ (τ), ψ (ω)T =
(
1, . . . , ej2πω(I−1)δt

)
,

φ (τ )T =
(
e (−τ) , . . . , e

(
N−1
B

− τ
))

, τ and ω denoting the
delay and the Doppler-shift associated to a target. The MLEsof Θ
are asymptotically efficient and Gaussian, and for2 targets [21]:

Cv
Θ̂

= CRBvΘ
= 2Re

{
J (Θ)⊙

((
x
T
1 x

∗
1

)
⊗ 12×2

)}−1

,

whereJ (Θ) is given in [22]. We consider a high resolution scenario
in terms ofθ, that is a small Doppler-Shiftdω = 1/ (12I) (I = 8)
and a small delays differencedτ = 1/ (8B) (δt0 = 32/B). e (t) is
a linear chirp. Figure (1) displays the empirical and theoretical MSE
to CRB ratio (shrinkage factor) averaged over the two targets for
both the delay and Doppler shift. The empirical MSE are assessed
with 105 Monte-Carlo trials from the normally distributed vector as-
sociated with the asymptotic behavior ofvΘ ∼ N (vΘ,CRBvΘ

).
The theoretical MSE is computed from (9). The match between the-
oretical and empirical results provides an empirical proofof the ex-

actness ofCvΘ[M]
andE

[
vΘ[M]

]
given in (8a-8b).

3.2. Monitoring of the states range of Kalman filters

We consider the class of real linear discrete state-space (LDSS) mod-
els represented with the state and measurement equations:

xk = Fk−1xk−1 +wk−1, yk = Hkxk + vk, (13)

where the time indexk ≥ 1, xk is theM -dimensional state vector,
yk is theN -dimensional measurement vector and the model matri-
cesFk andHk are known. The process noise sequence{wk} and
the measurement noise sequence{vk}, as well as the initial state
x0 are Gaussian random vectors.x̂k|k , x̂k|k (y1, . . . ,yk) denotes
an estimate ofxk based on measurements up to and including time
k. If {wk}, {vk} andx0 are uncorrelated, then the minimum MSE
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estimator̂xk|k for LDSS models has a recursive predictor/corrector
format, aka the Kalman filter (KF) [23][24,§9.1][25,§7.1]:

x̂k|k = Fk−1x̂k−1|k−1 +Kk

(
yk −HkFk−1x̂k−1|k−1

)
(14a)

E
[
x̂k|k

]
= E [xk] , Cx̂k|k

= Cxk
−Pk|k, (14b)

whereE [xk] = Fk−1E [xk−1], Cxk
= Fk−1Cxk−1F

T
k−1 +

Cwk−1 , Pk|k = E
[(
x̂k|k − xk

) (
x̂k|k − xk

)T ]
andKk verify:

Pk|k = (I−KkHk)Pk|k−1,

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

H
k +Cvk

)−1
,

Pk|k−1 = Fk−1Pk−1|k−1F
H
k−1 +Cwk−1 .

(14c)

At each time indexk, the range of states vectorxk is:

γk = max {xk} −min {xk} = (xk)(M) − (xk)(1) . (15)

The ability to monitor the states range of a Kalman filter is offirst
importance if the actual system modeled by the linear state equa-
tions (13) can break down or enter a non-linear mode when the
states range exceeds a given range limit. In that perspective, if L
i.i.d. LDSS models are available, that isxk (l) = Fk−1xk−1 (l) +
wk−1 (l) andyk (l) = Hkxk (l) + vk (l), 1 ≤ l ≤ L, then one can
derive from the concomitants of:

s = Θ
T
a, Θ ,

[
x̂k|k (1) . . . x̂k|k (L)

]T
, a = L−1

1L, (16a)

the following estimator ofγk [12]:

γ̂k = a
T
(
θ[M] − θ[1]

)
. (16b)

Thenµ
vΘ

andCvΘ
in (1) are obtained from:

µθm
= E [xm]1L, Cθm,θ

m′ =
(
Cx̂k|k

)

m,m′
IL, (17a)

yielding generally correlated column vectors ofΘ (16a) since
Cx̂k|k

are not diagonal matrices in general (14b); hence the need of
(8a-8b) to assess the second order statistical prediction of γ̂k (16b).

4. APPENDIX

If the column vectors of matrixΘ = [θ1 . . . θM ] are i.i.d., then
µ

vΘi

= µ
vΘ

= 1M ⊗ µθ , CvΘi
= CvΘ

= IM ⊗ Cθ,

whereµθ ∈ MR (P, 1) and Cθ ∈ MR (P, P ). As a conse-
quence:µ

si
= µ

s
= aTµθ1M , ∆iµs

= 0, Ui = {ui|ui ≥ 0},
Cs = σ2

θIM , σ2
θ = aTCθa, Cs,vΘ

= IM ⊗
(
aTCθ

)
, leading to

ξi ∼ N(M−1)+MP

(
µξ,Cξ

)
whereµξ =

(
0

1M⊗µθ

)
and:

Cξ =

[
σ2
θ∆∆T ∆

(
IM ⊗

(
aTCθ

))

(IM ⊗Cθa)∆
T IM ⊗Cθ

]
.

Thus,ui = ∆is ∼ u = ∆s ∼ NM−1

(
0, σ2

θ∆∆T
)

and:

E [vΘi
|ui] = µvΘ

+C
T
u,vΘ

C
−1
u ui, (18a)

CvΘi
|ui

= CvΘ
−C

T
u,vΘ

C
−1
u Cu,vΘ

, (18b)

E
[
vΘi

v
T
Θi

|ui

]
= CvΘ|u + E [vΘi

|ui]E [vΘi
|ui]

T , (18c)

yielding the following simplified form of (8a):

µ
vΘ[M]

= µ
vΘ

∑M!
i=1 P (Ui) +C

T
u,vΘ

C
−1
u

∑M!
i=1 E

[
ui1{Ui}

]

Let v̂i =
ui

σθ
∼ NM−1

(
0,∆∆T

)
andVi = {v̂i : v̂i ≥ 0}. Since:

E
[
ui1{Ui}

]
= E [ui|Ui]P (Ui) = E [v̂i|Vi]P (Vi) = E

[
v̂i1{Vi}

]

then, denoting∆# = ∆T
(
∆∆T

)−1
:

C
T
u,vΘ

C
−1
u

∑M!
i=1 E

[
ui1{Ui}

]
= σ−1

θ C
T
s,vΘ

∆
#

M!∑
i=1

E
[
v̂i1{Vi}

]
.

In point of fact, it has be shown in [2] that:

∆
#∑M!

i=1 E
[
v̂i1{Vi}

]
= E

[
z(M)

]
, z ∼ NM (0, IM ) ,

therefore (8a) in the i.i.d. case is simply:

µ
vΘ[M]

= µ
vΘ

+ σ−1
θ C

T
s,vΘ

E
[
z(M)

]
(19)

The connection betweenCvΘ[M]
(7b)(8b) and [4] is a little bit more

tricky to establish and for sake of space, we will only provide a
sketch of the rationale detailed in [12]. Starting from the following
alternative expression of (7b):

CvΘ[M]
=
∑M!

i=1

(
CvΘi

|Ui
+ µ

vΘi
|Ui
µT

vΘi
|Ui

)
P (Ui)

−µ
vΘ[M]

µT
vΘ[M]

CvΘi
|Ui

= CvΘ|u +CT
u,vΘ

C−1
u Cui|Ui

C−1
u Cu,vΘ

µ
vΘi

|Ui
= µ

vΘ
+CT

u,vΘ
C−1

u E [ui|Ui]

allows to prove that:

CvΘ[M]
= CvΘ

+C
T
u,vΘ

C
−1
u

(
Cu[M−1]

−Cu

)
C

−1
u Cu,vΘ

,

that is:

CvΘ[M]
= IM ⊗Cθ +

IM⊗(aT
Cθ)

σs
Q

IM⊗(aT
Cθ)

σs
,

Q = ∆#
(
σ−2
s Cu[M−1]

−∆∆T
) (

∆#
)T

,

where in fact [12]Q = C
z(M)

− IM , leading to:

CvΘ[M]
= IM⊗Cθ+

IM ⊗ (Cθa)

σs

(
Cz(M)

− IM

) IM ⊗
(
aTCθ

)

σs

(20)
Finally, remembering thatvec (AXB) =

(
BT ⊗A

)
vec (X) and

(A⊗B) (C⊗D) = AC⊗BD, one obtains from (3a-3b):

E
[
θ[m]

]
=
(
dT
m ⊗ IP

)
(1M ⊗ µθ)+

σ−1
θ

(
dT
m ⊗ IP

)
(IM ⊗ (Cθa))E

[
z(m)

]

E
[
θ[m]

]
= (1⊗ µθ) + σ−1

θ

(
dT
m ⊗Cθa

)
E
[
z(m)

]

E
[
θ[m]

]
= µθ + σ−1

θ Cθad
T
mE

[
z(m)

]

and:

Cθ[m],θ[m′]
=
(
dT
m ⊗ IP

)
(IM ⊗Cθ) (dm′ ⊗ IP )+

(dT

m
⊗IP )(IM⊗(Cθa))

σθ

(
Cz(M)

− IM

)
(IM⊗(aT

Cθ))(dm′⊗IP )
σθ

Cθ[m],θ[m′]
= dT

mdm′Cθ +
d
T

m
⊗Cθa

σθ

(
Cz(M)

− IM

)
d
m′⊗a

T
Cθ

σθ

Cθ[m],θ[m′]
= dT

mdm′Cθ + Cθa

σθ

(
dT
m

(
Cz(M)

− IM

)
dm′

)
a
T
Cθ

σθ

Finally:

E
[
θ[m]

]
= µθ +

Cθa√
aTCθa

E
[
z(m)

]
(21)

Cθ[m],θ[m′]
= δm

′

m Cθ +
Cθaa

TCθ

aTCθa

(
d
T
mCz(M)

dm′ − δm
′

m

)
(22)

which include [4, (1)(2)(17)].
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