978-1-5090-4117-6/17/$31.00 ©2017 IEEE

CONCOMITANT OF ORDERED MULTIVARIATE NORMAL DISTRIBUTION W

ITH

APPLICATION TO PARAMETRIC INFERENCE

Eric Chaumette and Francois Vincent

University of Toulouse/lsae-Supaero, 10 Avenue EdouatuhB&1400 Toulouse, France.
(eric.chaumette@isae.fr, francois.vincent@isae.fr)

ABSTRACT

In statistics, the concept of a concomitant, also calledrttieced or-
der statistic, arises when one sorts the members of a ranaiople
according to corresponding values of another random saniple
deed, multivariate order statistics induced by the ordeadhlinear
combinations of the components arises naturally in martantes.
As a contribution, we provide a general second-order $itzlgre-
diction of concomitant of order statistics for multivagatormal dis-
tribution, generalizing earlier works. We exemplify itefigness in
parametric inference via two examples related to detestinand
Bayesian estimation.

Index Terms— Multivariate normal distribution, Order statis-
tics, Concomitants, Parametric Inference, Mean Squax Err

1. INTRODUCTION
The ordered values of a sample of observations are calledrtiez
statistics of the sample: #7 = (61,...,6:)" is a vector of M

real valued random variables, th@py, = (61), . - .,G(M))T de-
notes the vector of order statistics induceddoyheref 1y < 02y <
... < Oy [1]. Order statistics and extreme values are among th
most important functions of a set of random variables in abib
ity and statistics. There is natural interest in studyinglifghs and
lows of a sequence, and the other order statistics help ierstahd-
ing concentration of probability in a distribution. Ordeatsstics
are also useful in statistical inference, where estimdtpammeters
can be based on some suitable functions of the order statisctor
(robust location estimates, detection of outliers, cezdsampling,
characterizations and goodness of fit....) [1] or be imihji@rdered
as in maximum likelihood estimation for parametric infarer(see
Section 3 and [2]). Since there is no direct extension of ocde-
cept to multivariate random variables, the extension otedore
based on order statistics to such situations is inappkcatbwever,

if we consider a random sample arising from a bivariate ithstr
tion {(s1,61),...,(sm,0a)}, ordering of the values recorded on

with the corresponding variate [3]. These random variables ob-
tained due to the ordering of tifés are known as the concomitants
of order statistics(,;) and are denote@,; = (6p1),...,0ar)-
Hence the general concept of a concomitant in statistiss, @lled
the induced order statistic, arising when one sorts the reesntf

a random sample according to corresponding values of anathe
dom sample [1]. In that perspective, a generalization obfhariate
case, where the samp{@1, 0., ..., 0.} consists ofM multivari-
ate random variables, is obtained by resorting to a lineaboation

of the forms™ = (67a,...,67,a). Then the ordering of the sam-
ples, i.e. s(yp, induces the associate ordering of random vectors
O, i.€. Oy = [0 ... O] [1]. Multivariate order statistics
induced by the ordering of linear combinations of the congmis
arises naturally in many instances. For example, in theuatian

of the performance of students in a course, the final gradebeay
a weighted average of the scores in a mid-term test and thle fina
examination. Other interesting examples arise in hydsolabile
analyzing extreme lake levels [4], in biological selectjmmoblem
[5], ocean engineering [6], development of structural giesi[7].
Therefore, the need to characterize the order statistotshair con-
comitants has led to a large body of work summarized in [19]8]

A fairly general second-order statistical prediction ohcomitants

©f ordered multivariate normal distribution has been givej#] and

[10] for the situation in which the random vectds, are indepen-
dent. Unfortunately the situation where vectérs are independent
is not the common situation in many instances of the settirdge

consideration (see section 3).

Therefore, as a contribution, we provide the most general
second-order statistical prediction of order statisticd their con-
comitants for multivariate normal distribution, whatevbey are
dependent or independent. These closed forms generatizather
work from [4] and [10].

We exemplify their usefulness in parametric inference.ebd] the
asymptotic performance analysis of the mean square err&E)M
of maximum likelihood estimators (MLEs) can be refined by the
study of concomitants of ordered estimates (generaliziagsingle
unknown parameter case addressed in [2]). In Kalman filjefion

the first variables generates a set of random variables associatetinear discrete state-space models, concomitants of eddesti-

This work has been partially supported by the DGA/MRIS
(2015.60.0090.00.470.75.01).

1The n-th coordinate of the column vecteris denoted byz,, or (a),,.
The n-th row andmth column element of the matriA is denoted by

Anm o (A),, ... If A = [a1 ... ap], thenva £ vec (A) =
(aT,,...,aT,)". 1 denotes the/-dimensional column vector with all

components set tb. Ip; € RM*M denotes the identity matrixP (A)
and1 43 denote the probability and the indicator function of an évédn

Elg(y)] = [g(y)p(y)dy denotes the statistical expectation of the vec-
tor of functionsg ( ) with respect to the random vectgr
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mates can be used to monitor the range of the states vector.

2. STATISTICAL PREDICTION OF CONCOMITANTS OF
ORDERED MULTIVARIATE NORMAL DISTRIBUTION

Let us consider the observation &f random Gaussian vectors with
P components:{em}ff:l. The vector gathering thB M Gaussian
random variables is denoted by where® = [0, ... O] €
Mg (P, M), and:
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vg = 0?,.. 0M>, ve ~ Npum (MV@,C\,@), Q)
Co, 0, Co,.01
Cve = : :
l‘eM Co,.04 Coyr.00
As in [4], let us consider the following/-dimensional vector:
- (91Ta, .,9£,a)T =0"a, ac Mz (P,1), (2a)

then, the concomitants efa;) = (s, - - -

[9[1] .

dar} be theM-dimensional unit basis vectors; then:

, () are defined as:

6[1\/1] = 0[1\/[]] | 0[771,] = H'm/ = S(m) = Sm/- (Zb)

Let {dl, ey

() = vec (Opdim) = Smve,,,, Sm=d;, @Ip, (3a)

T
E [0pm] = SmE [Vewd » Copy 0, = SmCro, S
(3b)

In other words, the first and second order statistical ptigaticof

{6

thats(yy € Per(s), wherePer(s) = {s; = Pis;i =1,..., M!}

is the collection of random vectoss corresponding to thé/! differ-

ent permutations of the componentsoHereP; € R *M are per-
mutation matrices withP; # P, forall i # j. LetA ¢ R —D>xM

be the difference matrix such thats = (s2 — s1, s3 — s2, ..., M —

sm—1)T,i.e., themthrowofAisd% ; —dl,m=1,..,M —1.

LetS; = {s : As; > 0} wheres; ~ Nur (p,,,Cs,), py, =

Pip,, Cs, = P;C;PT. As the set of event§S;} ", is a parti-
tion of R, whatever the vector of real valued functidhé), by the
theorem of total probability we have:

B[t (vou)| = T B [f (veun) 18] P (5

Bf (vou, )| =SX\ Elf (vo ) ISIP(S)  (4a)

where®; = ®PY. However, from a computational point of view,

it is wiser to express (4a) as:
E [t (Ve )| = SML Bl (ve,) th] P )
{u; 1 u; >

where U; > —Ajp gt andu; = Aj(s—pg) ~
Nu-1(0,A,CsAT), A; = AP;. As[1]:

(4b)

£ = (J;:) ~Nm-1+mp (”’giv Ca) ) (5a)
te, = <NV0@1 ) Ce, = cfi@ Cév;@ } ., (h)
whereve, = (P; ® Ip) ve, therefore:
E[f (ve,) ] = EIE[f (ve,) [wi] [Ui]
and (4b) can be finally rewritten as:
B[t (ve,, )] = SM\ EIE[E (ve,) W U] P ) (6)
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Oan } derive from the first and second order statistical
prediction ofve,,,, which is introduced in this section. First, note

In particular:

Hve,,, = E[veu| = S\ BIEve ju] 4] P @) (72)

M! T T
Cvepy = 2z E[ [Veiv@i‘ui] M] ~ Hvepy, Hve

[M]

(7b)
where:
Elve,luil = pyq +Cuve, Culw (70)
Cio,lu; = CV@; - Cziv"e, Cl_‘iICu%"V@i (7d)
B[vevb,[u| = Cugu +Elveluw]Elve,lul (7e)
Then a smart exploitation of (7a-7e) yields [12]:
M!
T -1
NV@[}M] P <uV@ Pi+ Cy, Ve, Cg, el) (8a)
M!
Croyyy = 2 (Cro i + tive, o, ) P (8b)
M T —1 T
+ Z:l (I"Lve €; C CU Ve, + C‘vaei Cuz ei/J'vG)l)
M! _1 T
+ = ( u;,ve, Cul R; C Cu Ve, ) - ’J‘VQ[M] I‘Lve[M]
where:

Pi = P(L{z),ez =F [uil{ui}} 5 R, =F [ui (ui)T 1{141}] 5

T —1
C = CV@Z - Cui,vei Cui Cui,vei )

ve, Iu;

Ho, = (Pi@1p) iy, Cra, = (Pi@1p) Cug (PT @10,

Cu, = AC.AT, C, = (IM ® aT) Cuo (I ®a),
Cuive, = AiCsve (PI @1r), Cave = (Iu ®a") Cue.

As shown in [2],{P;,e;, R}, can be computed by resorting to
algorithms proposed by Genz [1] for numerical evaluatiomatti-
variate normal distributions and moments over domaingigred in
[—10,10]*. Note that the use of (3b) in conjunction with (8a-8b)
yields a generalization of [2] obtained fét= 1 anda £ a = 1.

The correctness of expressions (8a) and (8b) can be chesked (
Appendix) by inspection of the case where the column veatbrs
matrix ® are i.i.d., which has been addressed in [4].

In the two sources cas® = [0, 02] € Mg (P,2) and:

- Hléllel C :[Clécel Cl2—09192}
ve Mo £ Heo, e C{a C2 = Co, .

Moreoveru; = —ua, P1 + P2 = 1, e1 —e2 = Efu1] = 0,

Ri+ Ry = E[0}] = 02 = aT (C1 + C2 — 2C1.2) a, leading to:

Copy = E [0pm O] = B (81 B [81m]” ©)

E [0[’”1] =+ (1) ((Fq —p) P2+ al:'gaZ ez) )
E [040(,] = Con + o hiay,
(*1)m71 <Cz —Ci + IJQIJ; _ /J'lﬂ/{ _ 32326—;181 P
+ (=)™ 1 <all‘1 +u131:f12lt2 +pdal s+ agagﬂ—AalalT R2> 7
wherea; = (C12 — Ci)aanda; = (Ci, — Cz)a



3. APPLICATION TO PARAMETRIC INFERENCE

3.1. Maximum likelihood estimation

The ongoing success of ML estimators (MLES) originates ftbhen
fact that, under reasonably general conditions on the pitisiic

observation model [13][14], the MLEs are, in the limit ofdarsam-
ple support, Gaussian distributed and efficient. Additilgni the

observation model is Gaussian, some additional asympgions
of operation yielding, for a subset of MLEs, Gaussian distied
and efficient estimates, have also been identified at finitgkasup-
port [15][16][17][18][19]. However, many estimation piieims are
actually unidentifiable unless they are regularized by isipg the
ordering of some unknown parameters. For illustration pseg, let
us considel independent observations of the linear model [11]:

y(O)=H@®@)x()+v (), (10)

wherey () is the vector of samples of siz&¥, M is the number
of signal sourcesx (I) is the vector of complex amplitudes of the
M sources for thé!" observation® = [6: ... O], H(®) =
[h(6:1) ... h(6r)]andh () is avector ofN parametric functions
depending on a vector & unknown paramete® € Q C RY, v (1)
are complex noises independent of fhiesources. Since (10) is in-
variant over permutation of signal sources amplitxdg), (10) is
an unidentifiable estimation problem which is regularizgdnpos-
ing the ordering of the unknown parametéﬁbm}ff:l. A straight-
forward ordering of{em}ﬁfle arises in the computation of MLEs
which requires a multidimensional non linear optimizationwhich
analytical solutions are in general not available. Foranse, if (10)
is a Gaussian conditional model [11][15]:

1<1<L,

6= [51 §M] = argmax{Zy( ) HH(@)y(l)}7 (11)

whereIla = A (AHA)f1 A, Therefore one has to resort to
numerical search techniques, generally compatible withprder
programming, such as the conversion d? &/ -dimensionnal search

Delay Doppler-shift

10 20 30 40 50 60 70
SNR (Db)

10 20 30 40 50 60 70
SNR (Db)

Fig. 1. Empirical and theoretical MSE to CRB ratio versus SNR

ing of a 1-element antenna array receiving scaled, timgddla
and Doppler-shifted echoes of a known complex bandpasslsign
e (t) e92mf<t wheref., is the carrier frequency. A standard obser-
vation model of a radar antenna receiving a pulse traihmflses of
durationdto, and bandwidthB, with a pulse repetition intervalt is
given by (10) where [20IL = 1, N = |§t/B], 87 = (1,w),
h(O) = $(@) ® @), Y@ = (1. e,
d(1)" = (e(=7),...,e (%51 — 7)), 7 and w denoting the
delay and the Doppler-shift associated to a target. The MifEd
are asymptotically efficient and Gaussian, and2ftargets [21]:

Cvg = CRBue =2Re{3(0) 0 ((xIx]) @ 12“)}_17

grid over Q™ into a 1-dimensionnal search grid. For instance, in whereJ (©) is given in [22]. We consider a high resolution scenario

Matlab, this is done by the sub2ind.m function which retuhaslin-
ear index equivalents to the specified subscripts for eatlemsion
of an N-dimensional array. For example, f = 2 and@ € Q =
[a1, b1] X [a2, ba], ONe can generate a rectangular search grid@ver

[11]:
} (12)

. ay +i101
= { <a2 Jri252>7

and convert eacl¥ € G into an equivalent linear search index
s = i1 + (I1 + 1) i2. Therefore, in practice (11) becom@s=
argmax{Zley(l)HHH(@(s))y(l)} and the issue of model
identifiability is solved by ordering yieldings . If 41 andd. are
small enough, thes ~ 87 a—so wherea” = (1/61, (I + 1) /d2)
andso = a1/d1 + (I1 + 1) a2/d2. Then, since the ordering does
not depend orsg, ® = © (S(,p)) are induced order statistic of
S(ur) (2b), that is concomitants & as).

bl ay

01
2

,0<i1 <@

éz—_az L 0<is <1y

in terms of@, that is a small Doppler-Shittw = 1/ (12I) (I = 8)
and a small delays difference = 1/ (8B) (dto = 32/B). e (t) is
a linear chirp. Figure (1) displays the empirical and thecaé MSE
to CRB ratio (shrinkage factor) averaged over the two tardet
both the delay and Doppler shift. The empirical MSE are assks
with 10° Monte-Carlo trials from the normally distributed vector as
sociated with the asymptotic behaviore$ ~ A (ve, CRB.g).
The theoretical MSE is computed from (9). The match betwben t
oretical and empirical results provides an empirical pafdhe ex-

actness oCV@ andE [ve ] given in (8a-8b).

3.2. Monitoring of the states range of Kalman filters

We consider the class of real linear discrete state-spd28$) mod-
els represented with the state and measurement equations:
(13)

Xp = Fr_1Xp—1 +Wg—1, yr=Hgxp + vy,

Therefore, the asymptotic performance analysis of the MBE oOwnere the time index > 1, x;, is the M-dimensional state vector,

MLES? can be refined by the study of concomitant of ordered mult|

variate normal distribution.
For illustration purposes, let us consider a radar systensisb

2This refinement is applicable to any other estimators, suchVa
estimators, Bayesian estimators (MAP, MMSE), as long ais dligribution
is normal multivariate
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vy is the N-dimensional measurement vector and the model matri-
cesF;, andH;, are known. The process noise sequefieg, } and
the measurement noise sequekeg }, as well as the initial state
xo are Gaussian random vectoks, , = Xk (Y1, -, yx) denotes
an estimate ok based on measurements up to and including time
k. If {wi}, {vr} andxo are uncorrelated, then the minimum MSE



estimatorx,, for LDSS models has a recursive predictor/correctorLetv; =

format, aka the Kalman filter (KF) [23][249.1][25,§7.1]:

Ripe = Feo1Xo_1om1 + K (yo — HeFro1Xp_1p—1)  (14a)
E [Xe] = Elxi],  Cxyy = Cxyp — Pai (14b)
where E[x;] = Fyp_1E [x3-1], Cx, = Fy_1Cx, ,Fr_, +
Cw,_ 1, Py =F [(ﬁk‘k —xk) (Ruje — xk)T} andK, verify:

Pur =1 —-KipHi)Prjp_q,

Ki = Py HY (HiPyp HE +Cy) 7, (14c)
Prjp—1 = Fk71Pk71|k71F1{i1 + Cwy_y-
At each time index, the range of states vectsy, is:
Ve = max {x;} — min {x;} = (ch)(M) — (Xk)(l) . (15)

The ability to monitor the states range of a Kalman filter idist
importance if the actual system modeled by the linear stata-e

L M- (0, AAT) andV; = {¥; : ¥; > 0}. Since:

2]

E[wily,y] = Blw|h] P Us) = E[V:VI]P (Vi) = E [Vilpy,]
then, denotingA# = AT (AAT)J:

ClhoCu' M B [wilp,] = 0p ' Chyo A %_Ijl E [Vilp,] -
In point of fact, it has be shown in [2] that:

A*SM B [$ilivny] = E [20n)] , 2~ Nar (0,1a)
therefore (8a) in the i.i.d. case is simply:

Pvo,, = Hve T 96 CiveF [20n)] (19)

M)
The connection betwe@v@w] (7b)(8b) and [4] is a little bit more

tricky to establish and for sake of space, we will only previa
sketch of the rationale detailed in [12]. Starting from tbédwing
alternative expression of (7b):

M! T
CV@[M] = Zi:l (Cvei [U; + lLV@,,:lMill'V@ilui> P (Z/{Z)

tions (13) can break down or enter a non-linear mode when the T

states range exceeds a given range limit. In that perspedti’
i.i.d. LDSS models are available, thatis (1) = Fr_1xx—1 (1) +
wi—1 (1) andyy (I) = Hixi (1) + vi (1), 1 <1 < L, then one can
derive from the concomitants of:

s=0"a, @2 Ry (1)... % (D))", a=L7 "1, (16a)
the following estimator ofy,, [12]:
7, =a" CRYRCIE (16Db)
Thenp, andCyg in (1) are obtained from:
Ho, = Elomlls, Co.0,, = (Cxy,) L,  (173)

yielding generally correlated column vectors & (16a) since

Cs,
Jk

(8a-8Db) to assess the second order statistical predictigp (16b).

4. APPENDIX

If the column vectors of matri® = [0 ... O] are i.i.d., then
Pyvg = Hyg = 1M ® pg, Cvg, = Cvo = In @ Coy,
where Be € Mgr(P,1) andCg € Mg (P,P). As a conse-
quenceip, = p, = a’ pelu, Aip, = 0,U; = {wi|u; > 0},
Cs = O%IM, O% = aTCga, Cs,v@) =Iu® (aTCQ), Ieading to
& ~ Nar—1y+mp (e, Ce) wherep, = (, 9 ) and:

o2 AAT

_ A(Iy® (aTCe))
CE N |: (IM (02 Cga) AT

In ® Co

Thus,u; = A;s ~u= As ~ N1 (O7 J%AAT) and:

Elve,|u] = pyg + CiveCu' i, (18a)
Cvo,lu; = Cve — Clive Cu ' Cuves (18b)
E [ve,vb,[ui] = Cugpu + Elve,u) Flve,lu]”, (180

yielding the following simplified form of (8a):

”ve[M] = Hve Zﬁ!l P (Us) + CE,V@CJI Zﬁ'l E [uil{uq,}}
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are not diagonal matrices in general (14b); hence the need @VQ[M] =In®Co+

_”VG)[M] ’*”VQ[M]
CVG)T, u; = Cve\u + C’lI;,v@Cl:ICul |U; Calcu,ve
H'V@i u; = Pveg + C’llliv@ CGlE [u1|ul}

allows to prove that:

_ T —1 —1
Cvayy, = Cve + ClivgCa' (Cupyr 1y — Cu) Cu' Cuve,s

that is:
Ivy® aTc In® alc
CV@[M] - IJW ® CG + M (Us 9) Q M (Us 9) }
— T
Q= A# (Us 2C“[M—l] - AAT) (A#) ’

where in fact [12]Q = C — I, leading to:

Z(M)

Iy ® (Cea)
Os

I c
(Caryy — 1) L2 (27C0)

o
Finally, remembering thatec (AXB) = (B” ® A) vec (X)(zfr?()j
(A®B)(C®D)=AC ® BD, one obtains from (3a-3b):

E[0m)] = (dh, ®1p) (1n @ pg) +

oyt (dﬂ ®1Ip) (In ® (Coa)) E [Z(m)]

E 0] = (1® pe) + 045" (df ® Coa) E [2(m)]

E [0)] = o + 05 ' Coad,, E [z(m)]
and:

) = (d7, ®Ip) (I ® Co) (dyy ®Ip) +

R (Cz(M) - IM> (1ar®(27Cp)) (A 1)
o6 90

Ce[m,] 01 =

a7 dl ®Cga d, ®aTCe
Ce[m],e[m/] =dpdyy Co + =2 7=5= £ (Cz(M) — IM) e
T
Coy)0(,) = iy Co + %22 (dF, (Capyyy = Tar) dr ) 2,52
Finally:
Csa
E |0, = + ———F |z, 21
6] o+ el [2(m)] (21)
m’ CeaaTCH T m’

CB[,,,L],O[M/] 5m CG + m (dmczuw)dm’ - 6m >(22)

which include [4, (1)(2)(17)].
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