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ABSTRACT

When the assumed probability distribution of the obseovetidif-
fers from the true distribution, the model is said to be messied.
The key results on maximum-likelihood estimation of missfied
models have been introduced in the limit of large sample stimd
depend on a parameters vector solution of a computatioegjign-
sive non-linear optimization problem. As a possible sggt® cir-
cumvent these limitations, we extend the approach latelpgsed
by Fritsche et al [1]. It is shown that the lower bound deriire{l]

is a representative of a family of lower bounds deriving framis-
specified unbiasedness constraint leadingeneralizedBarankin-
type lower bounds. For future use, we derive the standamsep-
tative of the "Small Errors” and "Large Errors” bounds, ndynthe
generalizedCRB and thegeneralizedMicAulay-Seidman bound.

Index Terms— Maximum likelihood estimation, misspecified
model, Cramér-Rao bound, Barankin bound

1. INTRODUCTION

In deterministic parameters estimation, the widespreadofisnax-
imum likelihood estimators (MLESs) originates from the fabat,
under reasonably general conditions on the probabilisisenvation
model [2][3], MLEs are, in the limit of large sample suppdbaus-
sian distributed and consisténtHowever, a fundamental assump-
tion underlying the above classical results on the propedf MLEs

is that the probability distribution function (p.d.f.) wdi determines
the behavior of the observations, for instafitel.d. M-dimensional
complex random vector@xt}tT:l, is assumed to lie within a spec-
ified parametric family of p.d.f. denotefh (x;) £ f (x:|0), 8 €

tightest lower bound (LB) on itself since it satisfies the amance
inequality (1d) [9][10], so-called the Huber "sandwich’enuality

in the present case. It is probably the reason why the demvat
of additional misspecified LBs have received little consadien in
the literature [11], apart from the misspecified Craméo-Baund
(MCRB) [12]-[14]. However, any LB deriving from the Hubermsk
wich inequality, including the asymptotic covariance rmaand the
MCRB, depends 0@ . Thus, its numerical evaluation requires to
solve a non-linear multidimensional optimization problémeach
value of@, a procedure suffering from a large computational cost as
the dimension of increases. Moreover, all the results mentioned
above hold only in the limit of large sample support.

A possible strategy to circumvent these limitations is fterna-
tive approach proposed in [1], where a so-called Cramér{and
(CRB) is derived for the class of estimators that are unbiase¢hat
have a specified bias (gradient) w.r.t. the assumed mfadet: ), in
the restricted case whepdx:| ) and f (x| ) share the same param-
eterization;p (x;) £ pe (x¢) 2 p (x:]0).

In the present paper, it is shown that the LB derived in [1] is a
particular case of a family of LBs deriving from a missped/figbi-
asedness (or biasedness) constraint leadiggneralizedarankin-
type LBs. ThegeneralizedLBs hold even if the true parametric
model is unknown, i.e. we do not have prior information on the
particular parameterization of the true distribution, &andny region
of operation of MLEs yielding unbiased estimates w.r.t.ahsumed
model fo (x:). In particular, in the limit of large sample support and
in some additional asymptotic regions of operation at findeple
support when the observation model is Gaussian [15]-[19GtuA
ally, the LB derived in [1] is not thgeneralizedCRB but a looser
generalized_B. Last, we examine the relevance of tjeneralized

R”. In other words, the probability model is assumed to be "cor-_Bs by computing standard representative of the "Small &frand

rectly specified”. Actually, in many (if not most) circumatzes, a
certain amount of mismatch between the true p.d.f. of thembs
vations denoteg (x:) and the probability modefs (x:) that we
assume is present. As a consequence, it is natural to igaestvhat
happens to the properties of MLEs if the probability modeahis-
specified, i.e. not correctly specified. Huber [5] explorediétail
the performance of MLEs (1a) in the limit of large sample sarpp
under very general assumptions on misspecification, provasdis-
tency, normality, and derived the MLEs asymptotic covazeathat
is often referred to as the Huber’s “sandwich covarianceitera-
ture (1c). Later, Akaike [6] observed that when the trueritigtion
is unknown, MLEs are natural estimators for the parametecs v
tor @ (1b) which minimizes the Kullback-Leibler information t&+
rion (KLIC) [7] between the true and the assumed probahitibdel.
Last, White [8] provided simple conditions under which ML&®
strongly consistent estimators for the parameters vedtdchwmin-
imizes the KLIC. Interestingly enough, a covariance maisithe

This work has been partially supported by the DGA/MRIS
(2015.60.0090.00.470.75.01).
1if the MLEs are consistent then they are also asymptoticflgient [4].
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"Large Errors” bounds, namely thgeneralizedCRB and thegener-
alizedMcAulay-Seidman bound, in the case of linear models.

1.1. Relation to prior work

Itis shown that the LB proposed in [1] is a representative fahaily

of LBs deriving from a misspecified unbiasedness (or biasssin
constraint leading tgeneralizedBarankin-type LBs, valid even if
the true parametric model is unknown. For future use, weveeri
the standard representative of the "Large Errors” and "SErabrs”
bounds, namely thgeneralizedMcAulay-Seidman bound and the
generalizedCRB, which is actually a tighter bound than the bound
released in [1].

2. BACKGROUND ON MLES UNDER MISSPECIFICATION

As mentioned in the introduction, several authors [5][B]fas
contributed to show that, under mild regularity conditigigen in
[8] (and summarized in [14, Section II.A]), the misspecifidtlE
(MMLE) defined as:
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0 (%) = arg;nax {fe (%) = Hthl fo (Xt)} ) (1a)

is, in the limit of large sample supporf'(— o), a strongly consis-
tent estimator for the parameters vector which minimizes<hIC:

0(x) “3 0= argmin { £, In (p (x:)) ~ In (fo (x:))]} (1)

wherext = (x7,....,xF)",p (%) = [T, p (x:) andB, [g (%)] =

J g(X)p(X)dx. Moreover6 (X) is asymptotically normal:
cMxT
0(X) & N(0,Cp), Cp “3 Curs(6;), where the asymp-
totic covariance matriCrs (6 ), the so-called Huber’s "sandwich
covariance”, is given by:

92 071"
rous o) =, [FEEE] @
{6lnf (x:]60) alnf(xt|0f):| {02 lnf(xt|0f)} -1
E, Ey
20 267 20007

A covariance matrix is the tightest LB on itself since it shés the
covariance inequality [9][10]. Thugn (X):

—1

Cus (07) > B, [(0(3) - 0,)n(®)"] By [n®)n ()]
<y |0 (0 -0;)' [ o
also called the Huber's "sandwich” (covariance) ineqyaliNote

thatCrs (0¢) (1c) is obtained for (X) = % [13]. How-
ever, any lower bound deriving from the Huber sandwich irdityy

The second property is that an unbiased estimtaf 0 should be
uniformly unbiased, i.e. i® denotes the parameter space:
VO €O : By @ (i)] 0. (3a)

If the support of fy (x) does not depend of, i.e. Q(0) =
{xeCMT| f(x]0) > 0} £ Q, then (3a) can be recasted as:
VO €O : Ey [(50 (%) — 9”) vgo (X; 9)] —6-6¢°, (3b)

= {289 denotes the likelihood ratio (LR). As a
A

consequence, the locally-best ¢4) unbiased estimator is the solu-
tion of a norm minimization under linear constraints:

2
‘ under
60

VoeO: <9A0 @) —0° | vgo (X 9)>00 —0-6". @

wherevgo (X;0)

min { HGAO (x) —0°

Unfortunately, if © contains a continuous subset Bf then (4)
leads to an integral equation with no analytical solutiomémeral
[20][23]. Therefore, since the seminal work of Barankin][28any
studies quoted in [10][20][21]have been dedicated to threvaléon
of “computable” LBs approximating the Barankin bound (BBg,
the MSE of the locally-best unbiased estimator. All thesgraxi-
mations derive from sets of discrete or integral linear ¢farm of
the "Barankin” constraint (3b) and can be easily obtainddgithe
following well known norm minimization lemma [20]. Lé&f be an
Euclidean vector space on the body of real numiiershich has a
scalar product | ). Let(c1,...,ck) be a free family ofK” vectors
of Uandv € R¥. The problem of the minimization dfu/|®> under

including (1c), depends d#;. As a consequence, its numerical eval- the K linear constraint§u | cx) = vk, k € [1, K], then has the

uation requires to solve a non-linear multidimensionalrojziation
problem (1b) for each value @, a procedure suffering from a large
computational cost when the dimensionfoincreases.

3. GENERALIZED BARANKIN-TYPE LOWER BOUNDS
FOR MISSPECIFIED MODELS

For the sake of legibility, we primarily focus on the estimatof
a single unknown real deterministic parameferlthough the re-
sults are easily extended to the estimation of multiple tions

of multiple parameters [20][21] (see the generalized CRB be

low for an example). Let us denotéy [g (X)] = Ey, [g(X)] =
J 8®) fo(x)dx.

cMxT

3.1. On Lower Bounds and Norm Minimization

In this subsection the assumed p.df$.(X) coincides with the true
p.d.f. of the observatiors.

solution:

min{HuH2} =v'R™'v, Rui={ck|cn).

®)

3.2. On Lower Bounds under Unbiasedness Misspecification

Under reasonably general conditions on the parametrit pg(x)
[2, pp. 500-503], the MLEY, ;, of #° is, in the limit of large sample
support, consistent, uniformly unbiased with respegft@x):
VOeO: E, [93{2 (i)} — 0, (6a)
Gaussian distributed and efficient. Additionally, if thesebva-
tion model is Gaussian, some additional asymptotic regiohs
operation yielding Gaussian, consistent and uniformly iasgd
(6a) MLEs have also been identified at finite sample support
[15][16][17][18][19].
However if f (X|0) is not the true p.d.f. of the observations, then

In the search for a LB on the mean square error (MSE) of unthiase(6a) is no longer the uniform unbiasedness constraint (8&)ab

estimators, two fundamental properties of the problem atha-
troduced by Barankin [22], must be noticed. The first propést

that the MSE of a particular estimatéP of 6°, §° £ ¢ (X) €
L? (CM*T), whered® is a selected value of the parameferis a
norm associated with a particular scalar productx) | v (X)), =
Eo [u (%) v (X)]:

MSEo [50] - He?’ () — 6° @

2
00
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given linear constraint:

geﬂ (%) fo () dx =0, [ fo®)ax=1, (60

where the constraint vectgfy (X) has a normalized integral. By
the way, asfy (X) is a p.d.f., it makes sense to regard (6a-6b) as a
misspecification of the uniform unbiasedness property.
Additionally, if {x € C**" | p (%) > 0} £ Q, i.e., if the supports



of the assumed p.d.ffy (X) and the true p.d.fp (x) are identical,
then, any estimatai® verifying (6a) satisfies,

VOO E, [(50 ) — 90) wp (%; a)] —9-¢°, (60)

fo(X)

wherew,, (X;0) = e , and (4) becomes:

2
under
r

W eo: (0°®) 0" w, (%0) =06, (6

min {MSEP [97’] - H@ () — 6°

where [[u ()| = (u(X)|u(X), and (u(x)|v (X)), =
Epu(X)v
in [20, Section I1.B] to propose generalizatiorof the BB under un-

biasedness misspecificatfoand an unknown true parametric p.d.f.

modelp (X).

Lete™ = (¢',.. .,HN)T € ©Y be a vector ofV selected values of
the parametef (aka test points)¢™ = (' —¢°,...,0" — 00)T
andw,, (%;0V) = (wp (X;0Y),...,w, (%6V))". Any estimator
90 verifying (6a)(6¢) must comply with:

B, [(0°®) - 0") w, (x:07)] =€,

and with any subsequent linear transformation of (7a). Thuoy

(7a)

given set ofK (K < N) independent linear transformations of (7a):

B, [(90 (%) — 90) hlw, (f;eN)] —hfeN, (b
h;, € RY k € [1, K], provides with a LB on the MSE (5):
~ T
MSE, [0°] > (¢V) Ry, &Y, (7c)
-1
Rl; =Hxk (HﬁprHK> HY, Hg=[hs ... hg],

(pr)n,n, =E, [wp (i; Hn/) wp (X5 9")} .

ThegeneralizedBB is obtained by taking the supremum of (7c) over

all the existing degrees of freedo(WV, 8", K, Hx). Moreover,
for a given vector of test point8”, the LB (7¢) reaches its max-
imum (gN)TRgigN if, and only if, the matrixH x is invertible

(K = N) [27][28, Lemma 3], which represents a bijective trans- £, [w% (x; 6)] Additionally if p(X) 2 pe(X)

formation of the set of théV initial constraints (7a). Ayeneralized

(X)]. Then, we can build upon the rationale introduced

(§N+1)T — <0, (§N)T and, by resorting to the inverse of a block
matrix, one obtains the following practical form :
T —1
@) v g
Ep [} (%:6°)] ’
wheree] = E, [w, (X;0°) wy, (%;0V)], which allows to incor-
porate the selected val# into the set of test points while keeping

the matrix and vectors dimensiq@V) unchanged. As announced
above, (8) cannot be directly extrapolated from the pratfiorm

of the MSB: MSB = (gN)T (Ru,o — 1N1]TV)_1§N obtained
wherep (%) £ pg (X) £ fo (X) [24, (3)].

e The generalized Craner-Rao bound (GCRB)
The GCRB is associated to the limiting form (7a) wilest points:

N0 (= 0 Wp (§§ ‘90) (0
(P @-0) <w,, (x:6° + d@))} - <d0> (92)
wheredf — 0 [22][25][26], leading to [28, Lemma 3]:

~ wp (%;0°) 0
- ()] - ()
If @ is a vector ofP unknown parameters, then (9b) becomes [29]:
E, [((/96 (X) — 00) wp (X 90)} =0
B (@) - 00) 5] =1

20T
By resorting to the generalization of (5) to a vector of estions [20,
Lemma 1], (9c) yields:

GCRB, (0°)=[0 Ir |R, [0 Ip ",

GMSB = (gN)T <Rw60

Ep

E, (9b)

(9¢)

(10a)
W, (X: 0
Rgo = E wp (%:6°)° o (3:0°) 2257)
60 = Lp 6wp(z;e") —. 0 Bwp(i;eo) 8wp(§;9°) :
o6 wWeo (Xve ) 20 26T

Then, a few additional lines of calculus allow to show th&{][2
0°) vZ (6°)\ '
(F,, (90) _ M) . (10b)

T11 (00)
whereF,, (6) = E, [6“”0(59> %

information matrix (GFIM),r11 (8) = E, [w, (%;0)%], r21 (0)

GCRB, (0°) =

] is a generalizedFisher

[I> I

dwp (X;HO) 91npgo (X)

form of any known bound on the MSE can be obtained with the ap/e (X) thenw, (X;0) = veo (X;0), — 53 = 26

propriate instantiation of (7c) [29]. §f (X) £ pe (X) £ fo (X), then

any generalizedBB approximation reduces to its standard form as-

sociated to correctly specified uniformly unbiased estirgf3a).
However, thegeneralizedorm of existing BB approximations com-
monly used in practice must be derived again as illustragtaib

e The generalized McAulay-Seidman bound (GMSB)

Actually (7a) yields the GMSB, that is (7c) whet¢ = N and
Hy = Iy: GMSB = ¢ (ON)TR;iE (™). A particular case
of interest occurs Whe(’leN“)T = (00, (BN)T). Indeed, then

2Actually f, (X) can be any real-valued function ®fparameterized by
6 with supportQ2 and a normalized integral, not necessarily positive.
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andrz; (8°) = Ego [%ﬂ)@} = 0, leading to:

GCRB, (6°) =F, (6°) "' =F (6°) "' = CRB (6"), (11)

whereF (6) = Ep [%g(*)%‘;@ is the usual FIM.
As a consequence, the LB derived in [1, (8)] in the particakse
wherep (X) £ pe (X):

LB (6°) = F, (6°) " 12)

is not the CRB under unbiasedness misspecification (10 stn

only takes into account the constraints:
- wp (X; 0 .
E, {(00 (%) — 00> 8’29(97;) = Ip. It is however a LB under

unbiasedness misspecification, but looser than the GCRB.



4. APPLICATION TO LINEAR GAUSSIAN MODELS

As in [1], the following true linear Gaussian model is comsid:

x = dyf +n,n ~ N (0,C,), whered,, € R andC,, ¢ RM*M
are supposed to be known. For any selected véfuef the param-
eterd, the true p.d.f. of the observation is thgiix) £ pyo (x) =
pw (x|dp0°, C,). Even if the linear structure and the noise p.d.f.
is known, generallyd,, and C, are not accurately known and are
replaced by assumed valugg andC, leading to the following as-
sumed p.d.f.fo (x) £ pa (x|ds6,Cy). In order to illustrate the
theoretical results of the previous section, we comparagusio
examples, the MSE of MMLE:

0°(x)=wix, w,=C;'d;/d;C;'dy, (13)

the Huber's MSE prediction computed from the "sandwich ceva
ance” (1c), the GMSB (8) witl2 test points, aka thgeneralized

Hammersley-Chapman-Robbins bound (GHCRB) [25][26], the

GCRB (10b), thegeneralizedoound (12) derived by Fritsche et al.
[1] (referred to as FB) and the CRB (11) associated to theanek
assumed p.d.f.s. The results are displayed in Fig. 1. Duage p
length limitation, the results hereafter, which are noficlift to
derive, are provided without proofs (included in [29]).

e The Huber’s "sandwich covariance”

For the Gaussian p.d.figo (x) and fy (x), the KLIC (1b) is:

KLIC o tr(C;'Cy) + 1In ‘c;lcp

I (14a)
+(ds0 — d,0°) " 7 (ds0 — dy6°)
leading to:
0% = wid,0o = E, [00 (x)} . (14b)
- In fo(x T -1 i fa[} (02
Moreover, sinc€ 26 — dTC ! (x—d0), By | —5i— | =
dfC;'C,C;ldy, and 2152 — _qTC;ldy, then:
dfC;'C,C;'d; ~
CHS(ef):W:VGTp |:0i|7 (140)

that is the Huber's MSE prediction coincides with the MSE ué t
MMLE (hence a single line plot "MML"” in Fig. 1).

e The GHCRB and the GCRB
If 0N £ 91 = ¢° + d6, then from (8):

d92R90 ,00

GHCRB = su , 15a
d9p Rpo 146,60 + a6 260 g0 — R§o+d9,9o (152)

where, ifC, > 1Cy [20, (33-34)]:
Rgo g1 = Ep [wp (x; 00) wp (x; 01)] (15b)

JIielc
— €

ICy|

—
(m30 610mg0 91 —040 p1)

andC — (20;1 fc;1>71, mgo g1 = Cjlds (0°+6") —
Cy g g1 = ((6°)° + (6)°) dF C7'd,— (6°)" 4 C; ' d

Last, the FB (12) is obtained from [1, (10)] and the CRBs are
CRBy = (dfC;'dy)"!,CRB, = (d;C,'d,)"".
We consider two examples similar to those used in [1]. Werassu

——MML
——GHCRB
——GCRB
FB
—v—CRBp
~—v CRBf

Mean Square Error (dB10)

30— ‘ : ‘ : : :

-08 -06 -04 -02 O 02 04
mean mismatch A (Lin)
@M = Q,Cf =C,,C, = IM,GO =1.

——MML

——GHCRB

—o—GCRB
FB

——CRBp

—v CRBf

30 T T T

Mean Square Error (dB10)

30— . . .
-08 -06 -04 -0.2 0 02 04

mean mismatch A (Lin)
(b)M =5,C;=12xC,, C, =1,6° = 1.

Fig. 1. MSE vs.A of (a) Example 1 and (b) Example 2.

thatd, = 1, dy = (1 + A)d, whereA is varied in the interval
[-1,1], 0° = 1, andC,, = I, (unit noise power). In the first ex-
ample,M = 2, and we assume thét; = C,, that is the true noise
power is accurately known, whereas in the second examyple; 5,
and the true noise power is known up to a scalar factor, wtsch i
assumed to be.2: C; = 1.2 x C,,. Fig. 1b) exemplify again (as in
[1]) the fact that the standard CRBSRB; andC'RB,, no longer
provide a lower bound on estimation performance whateentis-
specification considered. As expected, in both examplesFBis
looser than the GCRB. Last, it appears thatgkeeralized’Small
Errors” bounds (FB and GCRB) are unlikely to be informative i
a large domain of misspecification valugs, Cy), since they be-
come overly optimistic as soon as the misspecificatiofAnC )

The GCRB (10b) is the limiting case of the GHCRB (15a) whereincreases. Fortunately, the behavior of the GHCRB suggjestshe

df — 0, that is:
ef% (mg‘O,aDémsU,oO*‘seﬂ,eO)

GCRB(6o) = S
dic;'cC;ld,

(16)
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use ofgeneralized’Large Errors” bounds deneralizedBarankin-
Type LBs) will allow to increase the domain of misspecifioati
values(A, Cy) where such LBs remain tight enough to be relevant,
which is clearly a topic to be investigated in future resharc
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