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ABSTRACT

When the assumed probability distribution of the observations dif-
fers from the true distribution, the model is said to be misspecified.
The key results on maximum-likelihood estimation of misspecified
models have been introduced in the limit of large sample support and
depend on a parameters vector solution of a computationallyexpen-
sive non-linear optimization problem. As a possible strategy to cir-
cumvent these limitations, we extend the approach lately proposed
by Fritsche et al [1]. It is shown that the lower bound derivedin [1]
is a representative of a family of lower bounds deriving froma mis-
specified unbiasedness constraint leading togeneralizedBarankin-
type lower bounds. For future use, we derive the standard represen-
tative of the ”Small Errors” and ”Large Errors” bounds, namely the
generalizedCRB and thegeneralizedMcAulay-Seidman bound.

Index Terms— Maximum likelihood estimation, misspecified
model, Cramér-Rao bound, Barankin bound

1. INTRODUCTION

In deterministic parameters estimation, the widespread use of max-
imum likelihood estimators (MLEs) originates from the factthat,
under reasonably general conditions on the probabilistic observation
model [2][3], MLEs are, in the limit of large sample support,Gaus-
sian distributed and consistent1. However, a fundamental assump-
tion underlying the above classical results on the properties of MLEs
is that the probability distribution function (p.d.f.) which determines
the behavior of the observations, for instanceT i.i.d. M -dimensional
complex random vectors{xt}

T

t=1, is assumed to lie within a spec-
ified parametric family of p.d.f. denotedfθ (xt) , f (xt|θ), θ ∈
R

P . In other words, the probability model is assumed to be ”cor-
rectly specified”. Actually, in many (if not most) circumstances, a
certain amount of mismatch between the true p.d.f. of the obser-
vations denotedp (xt) and the probability modelfθ (xt) that we
assume is present. As a consequence, it is natural to investigate what
happens to the properties of MLEs if the probability model ismis-
specified, i.e. not correctly specified. Huber [5] explored in detail
the performance of MLEs (1a) in the limit of large sample support
under very general assumptions on misspecification, provedconsis-
tency, normality, and derived the MLEs asymptotic covariance that
is often referred to as the Huber’s “sandwich covariance” inlitera-
ture (1c). Later, Akaike [6] observed that when the true distribution
is unknown, MLEs are natural estimators for the parameters vec-
torθf (1b) which minimizes the Kullback-Leibler information crite-
rion (KLIC) [7] between the true and the assumed probabilitymodel.
Last, White [8] provided simple conditions under which MLEsare
strongly consistent estimators for the parameters vector which min-
imizes the KLIC. Interestingly enough, a covariance matrixis the
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1If the MLEs are consistent then they are also asymptoticallyefficient [4].

tightest lower bound (LB) on itself since it satisfies the covariance
inequality (1d) [9][10], so-called the Huber ”sandwich” inequality
in the present case. It is probably the reason why the derivation
of additional misspecified LBs have received little consideration in
the literature [11], apart from the misspecified Cramér-Rao Bound
(MCRB) [12]-[14]. However, any LB deriving from the Huber sand-
wich inequality, including the asymptotic covariance matrix and the
MCRB, depends onθf . Thus, its numerical evaluation requires to
solve a non-linear multidimensional optimization problemfor each
value ofθ, a procedure suffering from a large computational cost as
the dimension ofθ increases. Moreover, all the results mentioned
above hold only in the limit of large sample support.

A possible strategy to circumvent these limitations is the alterna-
tive approach proposed in [1], where a so-called Cramér-Rao bound
(CRB) is derived for the class of estimators that are unbiased or that
have a specified bias (gradient) w.r.t. the assumed modelfθ (xt), in
the restricted case wherep (xt| ) andf (xt| ) share the same param-
eterization:p (xt) , pθ (xt) , p (xt|θ).

In the present paper, it is shown that the LB derived in [1] is a
particular case of a family of LBs deriving from a misspecified unbi-
asedness (or biasedness) constraint leading togeneralizedBarankin-
type LBs. ThegeneralizedLBs hold even if the true parametric
model is unknown, i.e. we do not have prior information on the
particular parameterization of the true distribution, andin any region
of operation of MLEs yielding unbiased estimates w.r.t. theassumed
modelfθ (xt). In particular, in the limit of large sample support and
in some additional asymptotic regions of operation at finitesample
support when the observation model is Gaussian [15]-[19]. Actu-
ally, the LB derived in [1] is not thegeneralizedCRB but a looser
generalizedLB. Last, we examine the relevance of thegeneralized
LBs by computing standard representative of the ”Small Errors” and
”Large Errors” bounds, namely thegeneralizedCRB and thegener-
alizedMcAulay-Seidman bound, in the case of linear models.

1.1. Relation to prior work

It is shown that the LB proposed in [1] is a representative of afamily
of LBs deriving from a misspecified unbiasedness (or biasedness)
constraint leading togeneralizedBarankin-type LBs, valid even if
the true parametric model is unknown. For future use, we derive
the standard representative of the ”Large Errors” and ”Small Errors”
bounds, namely thegeneralizedMcAulay-Seidman bound and the
generalizedCRB, which is actually a tighter bound than the bound
released in [1].

2. BACKGROUND ON MLES UNDER MISSPECIFICATION

As mentioned in the introduction, several authors [5][6][8] has
contributed to show that, under mild regularity conditionsgiven in
[8] (and summarized in [14, Section II.A]), the misspecifiedMLE
(MMLE) defined as:
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θ̂ (x) = argmax
θ

{
fθ (x) =

∏T

t=1 fθ (xt)
}
, (1a)

is, in the limit of large sample support (T → ∞), a strongly consis-
tent estimator for the parameters vector which minimizes the KLIC:

θ̂ (x)
a.s.
→ θf = arg

θ

min {Ep [ln (p (xt))− ln (fθ (xt))]} (1b)

wherex =
(
xT
1 , . . . ,x

T
T

)T
, p (x) =

∏T

t=1 p (xt) andEp [g (x)] =∫
CM×T

g (x) p (x) dx. Moreover θ̂ (x) is asymptotically normal:

θ̂ (x)
A
∼ N

(
θf ,Cθ̂

)
, C

θ̂

a.s.
→ CHS (θf ), where the asymp-

totic covariance matrixCHS (θf ), the so-called Huber’s ”sandwich
covariance”, is given by:

TCHS (θf ) = Ep

[
∂2 ln f (xt|θf )

∂θ∂θT

]−1

× (1c)

Ep

[
∂ ln f (xt|θf )

∂θ

∂ ln f (xt|θf )

∂θT

]
Ep

[
∂2 ln f (xt|θf )

∂θ∂θT

]−1

.

A covariance matrix is the tightest LB on itself since it satisfies the
covariance inequality [9][10]. Thus∀η (x):

CHS (θf ) ≥ Ep

[(
θ̂ (x)− θf

)
η (x)T

]
Ep

[
η (x)η (x)T

]−1

×Ep

[
η (x)

(
θ̂ (x)− θf

)T ]
, (1d)

also called the Huber’s ”sandwich” (covariance) inequality. Note

thatCHS (θf ) (1c) is obtained forη (x) =
∂ ln f(x|θf)

T∂θ
[13]. How-

ever, any lower bound deriving from the Huber sandwich inequality,
including (1c), depends onθf . As a consequence, its numerical eval-
uation requires to solve a non-linear multidimensional optimization
problem (1b) for each value ofθ, a procedure suffering from a large
computational cost when the dimension ofθ increases.

3. GENERALIZED BARANKIN-TYPE LOWER BOUNDS
FOR MISSPECIFIED MODELS

For the sake of legibility, we primarily focus on the estimation of
a single unknown real deterministic parameterθ, although the re-
sults are easily extended to the estimation of multiple functions
of multiple parameters [20][21] (see the generalized CRB be-
low for an example). Let us denoteEθ [g (x)] , Efθ [g (x)] =∫
CM×T

g (x) fθ (x) dx.

3.1. On Lower Bounds and Norm Minimization

In this subsection the assumed p.d.f.fθ (x) coincides with the true
p.d.f. of the observationsx.
In the search for a LB on the mean square error (MSE) of unbiased
estimators, two fundamental properties of the problem at hand, in-
troduced by Barankin [22], must be noticed. The first property is

that the MSE of a particular estimator̂θ0 of θ0, θ̂0 , θ̂0 (x) ∈
L2
(
C

M×T
)
, whereθ0 is a selected value of the parameterθ, is a

norm associated with a particular scalar product〈u (x) | v (x)〉
θ
=

Eθ [u (x) v (x)]:

MSEθ0

[
θ̂0
]
=
∥∥∥θ̂0 (x)− θ0

∥∥∥
2

θ0
. (2)

The second property is that an unbiased estimatorθ̂0 of θ should be
uniformly unbiased, i.e. ifΘ denotes the parameter space:

∀θ ∈ Θ : Eθ

[
θ̂0 (x)

]
= θ. (3a)

If the support offθ (x) does not depend onθ, i.e. Ω (θ) ={
x ∈ C

M×T | f (x|θ) > 0
}
, Ω, then (3a) can be recasted as:

∀θ ∈ Θ : Eθ0

[(
θ̂0 (x)− θ0

)
υθ0 (x; θ)

]
= θ − θ0, (3b)

whereυθ0 (x; θ) = fθ(x)
f
θ0

(x)
denotes the likelihood ratio (LR). As a

consequence, the locally-best (atθ0) unbiased estimator is the solu-
tion of a norm minimization under linear constraints:

min

{∥∥∥θ̂0 (x)− θ0
∥∥∥
2

θ0

}
under

∀θ ∈ Θ :
〈
θ̂0 (x)− θ0 | υθ0 (x; θ)

〉
θ0

= θ − θ0. (4)

Unfortunately, if Θ contains a continuous subset ofR, then (4)
leads to an integral equation with no analytical solution ingeneral
[20][23]. Therefore, since the seminal work of Barankin [22], many
studies quoted in [10][20][21]have been dedicated to the derivation
of “computable” LBs approximating the Barankin bound (BB),i.e.
the MSE of the locally-best unbiased estimator. All these approxi-
mations derive from sets of discrete or integral linear transform of
the ”Barankin” constraint (3b) and can be easily obtained using the
following well known norm minimization lemma [20]. LetU be an
Euclidean vector space on the body of real numbersR which has a
scalar product〈 | 〉. Let (c1, . . . , cK) be a free family ofK vectors
of U andv ∈ R

K . The problem of the minimization of‖u‖2 under
theK linear constraints〈u | ck〉 = vk, k ∈ [1,K], then has the
solution:

min
{
‖u‖2

}
= v

T
R

−1
v, Rn,k = 〈ck | cn〉 . (5)

3.2. On Lower Bounds under Unbiasedness Misspecification

Under reasonably general conditions on the parametric p.d.f. fθ (x)

[2, pp. 500-503], the MLÊθ0ML of θ0 is, in the limit of large sample
support, consistent, uniformly unbiased with respect tofθ (x):

∀θ ∈ Θ : Eθ

[
θ̂0ML (x)

]
= θ, (6a)

Gaussian distributed and efficient. Additionally, if the observa-
tion model is Gaussian, some additional asymptotic regionsof
operation yielding Gaussian, consistent and uniformly unbiased
(6a) MLEs have also been identified at finite sample support
[15][16][17][18][19].
However if f (x|θ) is not the true p.d.f. of the observations, then
(6a) is no longer the uniform unbiasedness constraint (3a) but a
given linear constraint:

∫
Ω

θ̂0ML (x) fθ (x) dx = θ,
∫
Ω

fθ (x) dx = 1, (6b)

where the constraint vectorfθ (x) has a normalized integral. By
the way, asfθ (x) is a p.d.f., it makes sense to regard (6a-6b) as a
misspecification of the uniform unbiasedness property.
Additionally, if

{
x ∈ C

M×T | p (x) > 0
}
, Ω, i.e., if the supports
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of the assumed p.d.f.fθ (x) and the true p.d.f.p (x) are identical,

then, any estimator̂θ0 verifying (6a) satisfies,

∀θ ∈ Θ : Ep

[(
θ̂0 (x)− θ0

)
ωp (x; θ)

]
= θ − θ0, (6c)

whereωp (x; θ) =
fθ(x)
p(x)

, and (4) becomes:

min

{
MSEp

[
θ̂0
]
=
∥∥∥θ̂0 (x)− θ0

∥∥∥
2

p

}
under

∀θ ∈ Θ :
〈
θ̂0 (x)− θ0 | ωp (x; θ)

〉
p
= θ − θ0, (6d)

where ‖u (x)‖2
p

= 〈u (x) | u (x)〉
p
, and 〈u (x) | v (x)〉

p
=

Ep [u (x) v (x)]. Then, we can build upon the rationale introduced
in [20, Section II.B] to propose ageneralizationof the BB under un-
biasedness misspecification2 and an unknown true parametric p.d.f.
modelp (x).

LetθN =
(
θ1, . . . , θN

)T
∈ ΘN be a vector ofN selected values of

the parameterθ (aka test points),ξN =
(
θ1 − θ0, . . . , θN − θ0

)T

andωp

(
x;θN

)
=
(
ωp

(
x; θ1

)
, . . . , ωp

(
x; θN

))T
. Any estimator

θ̂0 verifying (6a)(6c) must comply with:

Ep

[(
θ̂0 (x)− θ0

)
ωp

(
x;θN

)]
= ξ

N , (7a)

and with any subsequent linear transformation of (7a). Thus, any
given set ofK (K ≤ N) independent linear transformations of (7a):

Ep

[(
θ̂0 (x)− θ0

)
h
T
k ωp

(
x;θN

)]
= h

T
k ξ

N , (7b)

hk ∈ R
N , k ∈ [1,K], provides with a LB on the MSE (5):

MSEp

[
θ̂0
]
≥
(
ξ
N
)T

R
†
HK

ξ
N , (7c)

R
†
HK

= HK

(
H

T
KRωpHK

)−1

H
T
K , HK = [h1 . . . hK ] ,

(
Rωp

)
n,n′

= Ep

[
ωp

(
x; θn

′
)
ωp (x; θ

n)
]
.

ThegeneralizedBB is obtained by taking the supremum of (7c) over
all the existing degrees of freedom

(
N,θN ,K,HK

)
. Moreover,

for a given vector of test pointsθN , the LB (7c) reaches its max-
imum

(
ξN
)T

R−1
ωp

ξN if, and only if, the matrixHK is invertible
(K = N) [27][28, Lemma 3], which represents a bijective trans-
formation of the set of theN initial constraints (7a). Ageneralized
form of any known bound on the MSE can be obtained with the ap-
propriate instantiation of (7c) [29]. Ifp (x) , pθ (x) , fθ (x), then
anygeneralizedBB approximation reduces to its standard form as-
sociated to correctly specified uniformly unbiased estimators (3a).
However, thegeneralizedform of existing BB approximations com-
monly used in practice must be derived again as illustrated below.

• The generalized McAulay-Seidman bound (GMSB)

Actually (7a) yields the GMSB, that is (7c) whereK = N and
HN = IN : GMSB = ξ

(
θN
)T

R−1
ωp

ξ
(
θN
)
. A particular case

of interest occurs when
(
θN+1

)T
=
(
θ0,
(
θN
)T)

. Indeed, then

2Actually fθ (x) can be any real-valued function ofx parameterized by
θ with supportΩ and a normalized integral, not necessarily positive.

(
ξN+1

)T
=
(
0,
(
ξN
)T)

and, by resorting to the inverse of a block

matrix, one obtains the following practical form :

GMSB =
(
ξ
N
)T
(
Rω

θ0
−

eN
p

(
eN
p

)T

Ep

[
ω2

p

(
x; θ0

)]
)−1

ξ
N , (8)

whereeN
p = Ep

[
ωp

(
x; θ0

)
ωp

(
x;θN

)]
, which allows to incor-

porate the selected valueθ0 into the set of test points while keeping
the matrix and vectors dimension(N) unchanged. As announced
above, (8) cannot be directly extrapolated from the practical form
of the MSB:MSB =

(
ξN
)T (

Rυ
θ0

− 1N1T
N

)−1
ξN obtained

wherep (x) , pθ (x) , fθ (x) [24, (3)].

• The generalized Craḿer-Rao bound (GCRB)

The GCRB is associated to the limiting form (7a) with2 test points:

Ep

[(
θ̂0 (x)− θ0

)( ωp

(
x; θ0

)

ωp

(
x; θ0 + dθ

)
)]

=

(
0

dθ

)
(9a)

wheredθ → 0 [22][25][26], leading to [28, Lemma 3]:

Ep

[(
θ̂0 (x)− θ0

)(ωp

(
x; θ0

)

∂ωp(x;θ0)
dθ

)]
=

(
0

1

)
(9b)

If θ is a vector ofP unknown parameters, then (9b) becomes [29]:




Ep

[(
θ̂0 (x)− θ0

)
ωp

(
x;θ0

)]
= 0

Ep

[(
θ̂0 (x)− θ0

)
∂ωp(x;θ0)

∂θT

]
= IP

. (9c)

By resorting to the generalization of (5) to a vector of estimators [20,
Lemma 1], (9c) yields:

GCRBp

(
θ
0) =

[
0 IP

]
R

−1
θ0

[
0 IP

]T
, (10a)

Rθ0 = Ep


 ωp

(
x;θ0

)2
ωp

(
x;θ0

) ∂ωp(x;θ0)
∂θT

∂ωp(x;θ0)
∂θ

ωθ0

(
x;θ0

) ∂ωp(x;θ0)
∂θ

∂ωp(x;θ0)
∂θT


 .

Then, a few additional lines of calculus allow to show that [29]:

GCRBp

(
θ
0) =

(
Fp

(
θ
0)− r21

(
θ0
)
rT21
(
θ0
)

r11
(
θ0
)

)−1

, (10b)

whereFp (θ) = Ep

[
∂ωp(x;θ)

∂θ

∂ωp(x;θ)

∂θT

]
is a generalizedFisher

information matrix (GFIM),r11 (θ) = Ep

[
ωp (x;θ)

2
]
, r21 (θ) =

Ep

[
∂ωp(x;θ)

∂θ
ωp (x; θ)

]
. Additionally if p (x) , pθ (x) ,

fθ (x) then ωp (x;θ) = υθ0 (x;θ),
∂ωp(x;θ0)

∂θ
=

∂ ln p
θ0 (x)

∂θ

andr21
(
θ0
)
= Eθ0

[
∂ ln p

θ0 (x)

∂θ

]
= 0, leading to:

GCRBp

(
θ
0) = Fp

(
θ
0)−1

= F
(
θ
0)−1

= CRB
(
θ
0) , (11)

whereF (θ) = Eθ

[
∂ ln pθ(x)

∂θ

∂ ln pθ(x)

∂θT

]
is the usual FIM.

As a consequence, the LB derived in [1, (8)] in the particularcase
wherep (x) , pθ (x):

LB
(
θ
0
)
= Fp

(
θ
0
)−1

(12)

is not the CRB under unbiasedness misspecification (10b) since it
only takes into account the constraints:

Ep

[(
θ̂0 (x)− θ0

)
∂ωp(x;θ0)

∂θT

]
= IP . It is however a LB under

unbiasedness misspecification, but looser than the GCRB.
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4. APPLICATION TO LINEAR GAUSSIAN MODELS

As in [1], the following true linear Gaussian model is considered:
x = dpθ+ n, n ∼ N (0,Cp), wheredp ∈ R

M andCp ∈ R
M×M

are supposed to be known. For any selected valueθ0 of the param-
eterθ, the true p.d.f. of the observation is thenp (x) , pθ0 (x) ,

pN
(
x|dpθ

0,Cp

)
. Even if the linear structure and the noise p.d.f.

is known, generallydp andCp are not accurately known and are
replaced by assumed valuesdf andCf , leading to the following as-
sumed p.d.f.fθ (x) , pN (x|dfθ,Cf ). In order to illustrate the
theoretical results of the previous section, we compare using two
examples, the MSE of MMLE:

θ̂0 (x)= w
T
f x, wf = C

−1
f df / d

T
f C

−1
f df , (13)

the Huber’s MSE prediction computed from the ”sandwich covari-
ance” (1c), the GMSB (8) with2 test points, aka thegeneralized
Hammersley-Chapman-Robbins bound (GHCRB) [25][26], the
GCRB (10b), thegeneralizedbound (12) derived by Fritsche et al.
[1] (referred to as FB) and the CRB (11) associated to the trueand
assumed p.d.f.s. The results are displayed in Fig. 1. Due to page
length limitation, the results hereafter, which are not difficult to
derive, are provided without proofs (included in [29]).

• The Huber’s ”sandwich covariance”
For the Gaussian p.d.f.spθ0 (x) andfθ (x), the KLIC (1b) is:

KLIC ∝ tr(C−1
f Cp) + ln

∣∣∣C−1
f Cp

∣∣∣
+
(
dfθ − dpθ

0
)T

C−1
f (dfθ − dpθ

0)
(14a)

leading to:

θ0f = w
T
f dpθ0 = Ep

[
θ̂0 (x)

]
. (14b)

Moreover, since∂ ln fθ(x)
∂θ

= dT
f C

−1
f (x−dfθ),Ep

[
∂ ln f

θ0
f
(x)

∂θ

2
]
=

dT
f C

−1
f CpC

−1
f df , and ∂2 ln fθ(x)

∂2θ
= −dT

f C
−1
f df , then:

CHS (θf ) =
dT
f C

−1
f CpC

−1
f df

(dT
f C

−1
f df )2

= V arp
[
θ̂0
]
, (14c)

that is the Huber’s MSE prediction coincides with the MSE of the
MMLE (hence a single line plot ”MML” in Fig. 1).

• The GHCRB and the GCRB
If θN , θ1 = θ0 + dθ, then from (8):

GHCRB = sup
dθ

dθ2Rθ0,θ0

Rθ0+dθ,θ0+dθRθ0,θ0 −R2
θ0+dθ,θ0

, (15a)

where, ifCp > 1
2
Cf [20, (33-34)]:

Rθ0,θ1 = Ep

[
ωp

(
x; θ0

)
ωp

(
x; θ1

)]
(15b)

=

√∣∣C
∣∣ |Cp|

|Cf |
e

1

2

(
m

T

θ0,θ1
Cm

θ0,θ1
−δ

θ0,θ1

)

and C =
(
2C−1

f −C−1
p

)−1

, mθ0,θ1 = C−1
f df

(
θ0 + θ1

)
−

C−1
p dpθ

0, δθ0,θ1 =
((

θ0
)2

+
(
θ1
)2)

dT
f C

−1
f df−

(
θ0
)2

dT
p C

−1
p dp.

The GCRB (10b) is the limiting case of the GHCRB (15a) where
dθ → 0, that is:

GCRB(θ0) =
e
−1

2

(
m

T

θ0,θ0
Cm

θ0,θ0
−δ

θ0,θ0

)

dT
f C

−1
f CC−1

f df

(16)

Last, the FB (12) is obtained from [1, (10)] and the CRBs are
CRBf = (dT

f C
−1
f df )

−1, CRBp = (dT
p C

−1
p dp)

−1.
We consider two examples similar to those used in [1]. We assume
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(b) M = 5,Cf = 1.2 ×Cp, Cp = IM , θ0 = 1.

Fig. 1. MSE vs.∆ of (a) Example 1 and (b) Example 2.

thatdp = 1M , df = (1 + ∆)dp where∆ is varied in the interval
[−1, 1], θ0 = 1, andCp = IM (unit noise power). In the first ex-
ample,M = 2, and we assume thatCf = Cp, that is the true noise
power is accurately known, whereas in the second example,M = 5,
and the true noise power is known up to a scalar factor, which is
assumed to be1.2: Cf = 1.2×Cp. Fig. 1b) exemplify again (as in
[1]) the fact that the standard CRBs,CRBf andCRBp, no longer
provide a lower bound on estimation performance whatever the mis-
specification considered. As expected, in both examples, the FB is
looser than the GCRB. Last, it appears that thegeneralized”Small
Errors” bounds (FB and GCRB) are unlikely to be informative in
a large domain of misspecification values(∆,Cf ), since they be-
come overly optimistic as soon as the misspecification on(∆,Cf )
increases. Fortunately, the behavior of the GHCRB suggeststhat the
use ofgeneralized”Large Errors” bounds (generalizedBarankin-
Type LBs) will allow to increase the domain of misspecification
values(∆,Cf ) where such LBs remain tight enough to be relevant,
which is clearly a topic to be investigated in future research.
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