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ABSTRACT

This paper proposes a fast and privacy preserving distributed algo-
rithm for handling low-rank regression problems with nuclear norm
constraint. Traditional projected gradient algorithms have high com-
putation costs due to their projection steps when they are used to
solve these problems. Our gossip-based algorithm, called the fast
DeFW algorithm, overcomes this issue since it is projection-free.
In particular, the algorithm incorporates a carefully designed decen-
tralized power method step to reduce the complexity by distributed
computation over network. Meanwhile, privacy is preserved as the
agents do not exchange the private data, but only a random projec-
tion of them. We show that the fast DeFW algorithm converges for
both convex and non-convex losses. As an application example, we
consider the low-rank matrix completion problem and provide nu-
merical results to support our findings.

Index Terms— distributed optimization, Frank-Wolfe algo-
rithm, gossip algorithms, low-rank regression, power method

1. INTRODUCTION

Recovering low-dimensional representations from huge volume of
data is a prominent problem in today’s machine learning and sig-
nal processing research. For instance, advances have been made in
sparse estimation [1] and low-rank matrix completion [2, 3].

While the theoretical foundations of recoverability are well es-
tablished, there is active research on computationally efficient re-
covery algorithms. Our paper is related to the efforts focused on
developing projected gradient (PG) based algorithms for ‘big-data’
problems [4, 5]. The complexity of the projection step required by
PG often increases polynomially with the problem dimension (e.g.,
cubically for matrix problems). Since this can be a prohibitive com-
plexity, in recent developments, the author in [6] has proposed the
use of the Frank-Wolfe (FW) algorithm [7] which is projection-free.
In fact, in the FW algorithm, the projection step is replaced by solv-
ing a linear optimization (LO) problem that can be solved at a much
faster speed (e.g., with linear complexity for matrix problems).

Our aim is to tackle the low rank regression problem, i.e., trace-
norm constrained problem, distributively and in a privacy preserving
manner. To this end, the distributed algorithms proposed in [8–13]
can be applied, which are developed from the PG algorithm and may
have a high complexity. What we propose is based on the DeFW
algorithm, which we presented recently in [14]. This paper focuses
on reducing the complexity of the LO step in the DeFW algorithm,
which for low-rank regression problems, requires the computation of
the top eigenvector/singular vector of a large matrix. Our proposal is
to replace the LO step in DeFW with a decentralized power method,
which provides further speed up using distributed computation.

This work is supported by NSF CCF-1011811.

We call our algorithm the fast DeFW algorithm. The first ad-
vantage of fast DeFW is that it requires only the elementary opera-
tions of matrix-vector multiplications and the gossip-based average
consensus steps exchange a reduced size message compared to the
original DeFW algorithm. Secondly, the fast DeFW algorithm is
source privacy preserving, since the data kept at the agents are not di-
rectly shared, instead a random projection of them is shared over the
network, therefore keeping the anonymity of the individually stored
data. We provide analysis for the convergence rates of fast DeFW
when the loss function is convex or non-convex. Numerical results
are shown to support our findings.

Notations — For N ∈ N, we denote the set {1, ..., N} as [N ].
The (k, l)th element of a matrix θ is [θ]k,l. ‖ · ‖ is the Euclidean
norm and 〈x,y〉 := x>y is the inner product. A function f is G-
Lipschitz if |f(θ) − f(θ′)| ≤ G‖θ − θ′‖ for all θ,θ′ ∈ Rd, and
is S-smooth if f(θ)− f(θ′) ≤ 〈∇f(θ′),θ− θ′〉+ S‖θ− θ′‖2/2
for all θ,θ′ ∈ Rd, where ∇f(θ) is the gradient of f at θ. The set
of symmetric real matrix of dimension d × d is Sd. For X ∈ Sd,
X � 0 says that X is positive semidefinite. We denote σi(X) as
the ith largest singular value ofX . For some positive finite constants
C1, C2, the notations f(t) = O(g(t)), f(t) = Ω(g(t)) indicate that
f(t) ≤ C1g(t), f(t) ≥ C2g(t) for sufficient large t, respectively.

1.1. Related Works
An alternative formulation for fast low-rank regression is to consider
a matrix factorization based formulation [3] (a decentralized version
is studied in [15]). Herein, one fixes the rank of the matrix to be esti-
mated and tackles a non-convex optimization problem using alternat-
ing minimization. However, the matrix rank is unknown in practice
and the nuclear norm regularized formulation we consider is more
flexible in handling real data. Other related works include [16, 17]
which consider using power method for privacy preserved PCA.

2. DISTRIBUTED LOW RANK REGRESSION

Consider a network ofN agents, indexed by i ∈ [N ], each holding a
different loss function designed from the data that he/she possesses.
The agents communicate through an undirected graph G = (V,E),
where V = [N ] andE ⊆ [N ]× [N ]. The graphG is associated with
a doubly stochastic weight matrix W ∈ RN×N+ such that Wij =
[W ]ij = 0 if and only if (i, j) /∈ E and we assume σ2(W ) < 1.
We consider the distributed low rank regression problem:

minθ̃∈Rm1×m2 N−1∑N
i=1 f̃i(θ̃) s.t. ‖θ̃‖σ,1 ≤ R/2 , (1)

where R > 0, f̃i : Rm1×m2 → R is a continuously differen-
tiable loss function (possibly non-convex) that is known at agent i
and ‖θ̃‖σ,1 is the sum of singular values of the matrix θ̃.

As a sample application of (1), we study a generalized matrix
completion problem, in which each agent is given a set of noisy ob-
servations on the entries of a large matrix θ̃true. In particular, agent
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i has
Y is = Tr(Ai

sθ̃true) + Zis, ∀ s ∈ [Si] , (2)

where Si is the number of observations available at agent i, Zis is
an additive noise and Ai

s ∈ Rm2×m1 is an observation matrix. For
example, in the standard matrix completion problem, Ai

s = else
>
ks

and Y is is a noisy observation of [θ̃true]ks,ls . For the loss functions
f̃i(·), we consider two candidates —- (i) the square loss function:

f̃i(θ̃) =
∑Si
s=1

(
Y is − Tr(Ai

sθ̃)
)2
, (3)

or (ii) the negated Gaussian loss function: for some parameter σi >
0,

f̃i(θ̃) =
∑Si
s=1

(
1− exp

(
− (Y is − Tr(Ai

sθ̃))2/σi
))
. (4)

Notice that the square loss is convex and the negated Gaussian loss
is non-convex. As we shall see in the numerical example, the square
loss is effective when Zis is Gaussian, while the negated Gaus-
sian loss is effective when Zis is a sparse noise that pertains to the
sparse+low-rank model [18]. It is assumed that θ̃true is a low-rank
matrix and the trace-norm constraint in (1) helps enforcing this.

Next we introduce an equivalent form of (1) that will be easier
to work with. Let θ1 ∈ Sm1 , θ2 ∈ Rm1×m2 , θ3 ∈ Sm2 be the
sub-matrices of θ ∈ Sd, d := m1 +m2 and δ ∈ R be a constant,

θ :=

(
θ1 θ2

θ>2 θ3

)
and fi(θ) := f̃i(θ2) + (δ/N)Tr(θ) . (5)

The following problem is equivalent to (1):

minθ∈Sd F (θ) := N−1∑N
i=1 fi(θ) s.t. Tr(θ) = R, θ � 0 .

(6)
The equivalence follows from the lemma:

Lemma 1 [19, Lemma 1] Consider a non-zero matrix θ̃ ∈
Rm1×m2 . We have the following equivalence:

‖θ̃‖σ,1 ≤
R

2
⇐⇒

∃ θ1 ∈ Sm1 ,θ3 ∈ Sm2 s.t.(
θ1 θ̃

θ̃> θ3

)
� 0, Tr(θ1) + Tr(θ3) = R.

In particular, for any feasible solution θ̃ to (1), we can find a point θ
that is feasible to (6) and it satisfies f̃i(θ̃) = fi(θ)− δR/N, ∀ i ∈
[N ]. On the other hand, for any feasible θ to (6), its sub-matrix θ2

satisfies ‖θ2‖σ,1 ≤ R/2 and is thus feasible to (1).
Before introducing the fast DeFW algorithm, in the following

we describe the DeFW algorithm [14, Algorithm 1] for (6). Let
θit, θ̄

i
t,∇tiF be the local variables kept by agent i at iteration t. At

the tth iteration of the algorithm, we perform the iterative updates:

θit+1 = (1− γt)θ̄it + γtR ·ait(ait)>, ait = TopEV(−∇tiF ) , (7)

for each agent i ∈ [N ], where γt ∈ (0, 1] is a decreasing step size
with γ1 = 1. In the above, ait is the top eigenvector of −∇itF . It
can be checked that θ̄it is always feasible to (6). Moreover, θ̄it and
∇itF are approximations of the average parameter and gradient:

θ̄it ≈ N−1∑N
j=1 θ

j
t , ∇itF ≈ N−1∑N

j=1∇fj(θ̄
j
t ) , (8)

where we note that∇fj(θ̄jt ) is a symmetric matrix. The approxima-
tions above can be obtained using a gossip-based average consen-
sus protocol, which involves communications between agents on the
network G. Moreover, when these approximations are sufficiently

Algorithm 1 Decentralized Power Method (DePM).

1: Input: Parameters L,P ∈ N, local gradients {∇fi(θ̄it)}Ni=1.
2: For each i ∈ [N ], generate an initial point v0

i 6= 0 as a d-
dimensional Gaussian random vector.

3: for p = 1, 2, ..., P do
4: v̄p,0i ← −∇fi(θ̄it) · vp−1

i , ∀ i ∈ [N ] .
5: for ` = 1, 2, ..., L do
6: v̄p,`i ←

∑N
j=1 Wij v̄

p,`−1
j , ∀ i ∈ [N ] .

7: end for
8: vpi ← v̄p,Li /‖v̄p,Li ‖, ∀ i ∈ [N ] .
9: end for

10: Return: Approximate top eigenvector vPi , ∀ i ∈ [N ].

accurate, the DeFW algorithm is shown to converge for both convex
and non-convex objective functions; see our analysis in [14].

The DeFW algorithm is projection-free such that it avoids com-
puting a costly, full projection step during the iterations; instead
DeFW proceeds by finding the top eigenvector of −∇itF (cf. (7)).
The latter is done at a much lower complexity, i.e., O(‖∇itF‖0),
than the corresponding projection step which takes O(m1m2 ·
max{m1,m2}). Next, we show how the DeFW can be further sped
up by a carefully designed decentralized power method.

3. MAIN RESULTS

Consider again the DeFW algorithm (7). Ideally, in the second equa-
tion, one wishes to find the unit norm vector:

ât = TopEV
(
−N−1∑N

j=1∇fj(θ̄
j
t )
)
, (9)

i.e., the top eigenvector of the average gradient. Notice that ât = ait
when ∇itF = N−1∑N

j=1∇fj(θ̄
j
t ), i.e., ∇itF is an exact approx-

imation. Decentralized methods for estimating the top eigenvector
from the sample covariance have been proposed by us [20,21]. Their
convergence were only discussed empirically [20] or in the asymp-
totic case [21]. For us, instead the objective is to use a decentralized
power method to obtain ât in (9). To this end, let v0 ∈ Rd be an
initial random vector and p ≥ 1, we need to compute

v̄p =
(
−N−1∑N

j=1∇fj(θ̄
j
t )
)
· vp−1, vp = v̄p/‖v̄p‖ . (10)

It is well known that vp converges to the top eigenvector of ât as
p → ∞ under mild conditions [22]. We will show how to compute
ât in a decentralized fashion, which will then lead to the design of
our fast DeFW algorithm.

3.1. Decentralized Power Method (DePM)
Like in [20], an important observation on (10) is that evaluating v̄p

is equivalent to taking the average of the N vectors {−∇fj(θ̄jt ) ·
vp−1}Nj=1, where each of these vectors is locally computable. This
motivates us to replace each recursion of the power method (10) by
a gossip-based average consensus step, yielding the decentralized
power method (DePM), as summarized in Algorithm 1. For ease of
presentation, we denote the ith agent’s output of Algorithm 1, vPi ,
as the subroutine DePMi(·) parameterized by L,P :

vPi := DePMi

(
{−∇fi(θ̄it)}Ni=1;P ;L

)
, ∀ i ∈ [N ] . (11)

Note that Line 6 is the gossip-based average consensus step repeated
for L times [23, 24] where information exchanges occur with the
agents transmitting a d-dimensional vector per round.
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The DePM method requires only a matrix-vector product as in-
dicated by Line 4. It is also privacy preserving as the agents only ex-
change the product (−∇fi(θ̄it)vp−1

i ), therefore the other agents do
not know who holds what portion of the observations and an eaves-
dropper on the network cannot steal the data. Now, let us denote
Mt := −N−1∑N

j=1∇fj(θ̄
j
t ), and state the following assumption:

H1 The spectral gap σ1(Mt)−σ2(Mt) is lower bounded by ξ > 0
and σ1(Mt) is upper bounded by B. Also, |u>1 v0

i | > 0,∀ i ∈ [N ]
where u1 is the top eigenvector ofMt.

The DePM method with carefully designed parameters L,P attains
a desirable accuracy with high probability (w.h.p.) in finite time.

Proposition 1 Under H1, fix 1/2 > ε > 0 and c > 0. If L =
Ω(log(1/(ξ · ε))/ log(1/σ2(W ))) and P = Ω((B/ξ) · log(d/cε)),
then with probability at least 1−Nc, we have:

(u>1 v
P
i )2 ≥ 1− ε2 and (u>j v

P
i )2 ≤ ε2, j = 2, ..., d , (12)

for all i ∈ [N ], and uj is the jth largest eigenvector ofMt. Also,

‖vPi (vPi )> − vPj (vPj )>‖ = O(ε), ∀ i, j ∈ [N ] . (13)

Proof : With our choice of L, the error resulting from the gossiping
step of Algorithm 1 (cf. Line 6) can be upper bounded as:

‖v̄p,Li −Mtv
p
i ‖ ≤

∥∥∥v̄p,Li −
N∑
j=1

v̄p,0j
N

∥∥∥+
∥∥∥ N∑
j=1

v̄p,0j
N
−Mtv

p
i

∥∥∥
≤ O(ε) + ‖

∑N
j=1∇fj(θ̄

j
t )(v

p
i − v

p
j )‖/N

≤ O(ε) + (B/N)
∑N
j=1 ‖v

p
i − v

p
j ‖ ≤ O(ε), ∀ p ≥ 1 ,

where the second inequality and the last inequality are due to our
choice of L and the geometric convergence of the gossip-based av-
erage consensus [24]; the third inequality is due to the boundedness
of∇fj(θ̄jt ) (since fj is smooth and the constraint set is bounded).

As such, the DePM can be analyzed as running N noisy power
methods in parallel at N agents, each initialized by v1

i . Conse-
quently, using our choice of P and applying [17, Corollary 1.1], the
following holds with probability at least 1−Nc (we can get rid of the
e−Ω(d) term in [17, Corollary 1.1] due to Assumption 1; see [25]):

‖(I − vPi (vPi )>)u1‖ ≤ ε, ∀ i ∈ [N ] , (14)

which taking squares on the both side yields the first inequality in
(12). The second inequality in (12) is derived from decomposing
vPi into the orthonormal basis {u1, ...,ud}. Lastly, the consensus
condition (13) follows from our choice of L such that ‖vPi −vPj ‖ =

O(ε) and the identity vPi (vPi )> − vPj (vPj )> = ((vPi − vPj )(vPi +

vPj )> + (vPi + vPj )(vPi − vPj )>)/2. Q.E.D.
The omitted constants in the big Ω(·) notations for L,P in

Proposition 1 are only logarithmic in the dimension d.

3.2. Fast DeFW algorithm
Equipped with the DePM method, we now summarize the proposed
fast DeFW (F-DeFW) algorithm in Algorithm 2, which is a two-
stage algorithm with an FW update in the outer loop and the DePM
method in the inner loop.

In comparison to the DeFW algorithm, Algorithm 2 does not
require a consensus step for exchanging the parameter variables
{θit}Ni=1. In fact, all the information exchanges required are done
within the DePM subroutine. We can establish similar convergence
guarantees as DeFW in [14]. Let Mt = −

∑N
j=1∇fj(θ̄

j
t )/N ,

θ̄t :=
∑N
i=1 θ̄

i
t/N and C denotes the feasible set of (6). We have

Algorithm 2 Fast DeFW (F-DeFW) Algorithm.

1: Input: Initial point θ̄i0 for i = 1, ..., N .
2: for t = 1, 2, ... do
3: DePM Step: apply the decentralized power method:

ait ← DePMi({−∇fj(θ̄jt )}Nj=1;Pt;Lt), ∀ i ∈ [N ] . (15)

4: Frank-Wolfe Step: update

θ̄it+1 ← (1− γt)θ̄it + γtR · ait(ait)>, ∀ i ∈ [N ] , (16)

5: end for
6: Return: An approximate solution θ̄it+1 for i = 1, ..., N .

Theorem 1 Suppose that H1 holds for all t ≥ 1. Fix c̃ > 0
and set Lt = Ω(log(t/ξ)/ log(1/σ2(W ))), Pt = Ω((B/ξ) ·
log(dt(Nt2/c̃))). Algorithm 2 satisfies the following with probabil-
ity at least 1− (π2/6)c̃:

• (Convex loss) If each of fi is convex, S-smooth and the step size
is γt = 2/(t+ 1), then:

F (θ̄t)− F (θ?) = O(1/t), ∀ t ≥ 1 , (17)

where θ? is an optimal solution to (6).

• (Non-convex loss) If each of fi is G-Lipschitz, S-smooth and the
step size is γt = t−α for some α ∈ [0.5, 1), then for all T ≥ 20:

min
t∈[T/2+1,T ]

max
θ∈C

〈∇F (θ̄t), θ̄t − θ〉 = O(1/T 1−α) . (18)

Moreover, for all i, j ∈ [N ], we have ‖θ̄tj − θ̄ti‖ = O(1/t).

Notice that the quantity in the left hand side of (18) is a measure of
stationarity for θ̄t. In particular, maxθ∈C〈∇F (θ̄t), θ̄t − θ〉 = 0
indicates that θ̄t is stationary. Due to the space constraint, only a
proof sketch is given. As the main proof ideas follow from [14],
interested readers are invited to consult the latter for details.
Proof Sketch: Let ρ := maxθ,θ′∈C ‖θ − θ′‖ be the diameter of C,
which is proportional to R. For both convex and non-convex cases,
using the S-smoothness of fi (and thus F ), we have:

F (θ̄t+1) ≤ F (θ̄t) +

N∑
i=1

γt
N
〈∇F (θ̄t), Ra

i
t(a

i
t)
> − θ̄t〉+

Sρ2γ2
t

2
,

(19)
The middle term of the right hand side above can be controlled as:

〈∇F (θ̄t), Ra
i
t(a

i
t)
>− θ̄t〉 ≤ ρ‖∇F (θ̄t)−

∑N
j=1∇fj(θ̄

j
t )/N‖

+ 〈
∑N
j=1∇fj(θ̄

j
t )/N,Ra

i
t(a

i
t)
>− θ̄t〉 . (20)

As fi is S-smooth, the first term in (20) can be bounded as

‖∇F (θ̄t)−
∑N
j=1∇fj(θ̄

j
t )/N‖ ≤ (S/N2)

∑N
j=1

∑N
k=1 ‖θ̄

j
t−θ̄tk‖.

Now, for all j, k ∈ [N ], we have

‖θ̄jt+1− θ̄
k
t+1‖ ≤ (1−γt)‖θ̄jt − θ̄

k
t ‖+γtR‖ajt(a

j
t)
>−akt (akt )>‖.

Using our choice of Lt and Proposition 1, we have ‖ajt(a
j
t)
> −

akt (akt )>‖ = O(1/t). Applying [26, Lemma 4 & 5], we can show
that ‖θ̄jt − θ̄kt ‖ = O(1/t) regardless of the choice of step size rule.
We thus conclude that ‖∇F (θ̄t)−

∑N
j=1∇fj(θ̄

j
t )/N‖ = O(1/t).

For the second term in (20), let ât := TopEV(Mt) and āt :=
TopEV(−∇F (θ̄t)). Since 〈Mt, ât(ât)

>〉 ≥ 〈Mt,aa
>〉 for all

‖a‖ = 1, we can show:
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〈Mt, θ̄t −Rait(ait)>〉 ≤ ρ‖∇F (θ̄t)−
∑N
j=1∇fj(θ

j
t )/N‖

+R〈Mt, ât(ât)
> − ait(ait)>〉+ 〈∇F (θ̄t), Rāt(āt)

> − θ̄t〉,

The first term in the right hand side above is bounded by O(1/t) as
discussed before. For the second term, applying the eigendecompo-
sition Mt =

∑d
k=1 λkuku

>
k with λ1 ≥ λ2 ≥ · · · ≥ λd and the

fact that ât = u1, we can express 〈Mt, ât(ât)
> − ait(ait)>〉 as:

〈Mt, ât(ât)
> − ait(ait)>〉 = λ1 −

∑d
k=1 λk(u>i a

i
t)

2 . (21)

Using our choice of Lt, Pt and Proposition 1, the output, ait = vPt
i ,

of the DePM method, satisfies (12) with ε2 = O(1/t2) and the right
hand side of (21) can be upper bounded byO(1/t2) with probability
at least 1− c̃/t2. Consequently, we can upper bound (20) as:

〈∇F (θ̄t), Ra
i
t(a

i
t)
>−θ̄t〉 ≤ 〈∇F (θ̄t), Rāt(āt)

>−θ̄t〉+O(1/t) .
(22)

Now, in the convex case where γt = 2/(t + 1), (19) and (22)
lead to the following that holds with probability at least 1−(π2/6)c̃,

F (θ̄t+1) ≤ F (θ̄t) + γt〈∇F (θ̄t), Rāt(āt)
> − θ̄t〉+O(1/t2) ,

for all t ≥ 1. Thus, 〈∇F (θ̄t), Rāt(āt)
>〉 ≤ 〈∇F (θ̄t),θ〉 for all

θ ∈ C since āt is the top eigenvector of −∇F (θ̄t) and Tr(θ) = R
if θ ∈ C. Taking θ = θ? and using the convexity of F (θ) yields

F (θ̄t+1)−F (θ?) ≤ (1− γt)(F (θ̄t)−F (θ?)) +O(1/t2) , (23)

for all t ≥ 1, and theO(1/t) convergence of F (θ̄t)−F (θ?) follows
from [26, Lemma 4].

In the non-convex case, we have γt = t−α. Similarly, we can
show that (19) and (22) lead to the following which holds with prob-
ability at least 1− (π2/6)c̃,

F (θ̄t+1) ≤ F (θ̄t)− γtgt +O(1/t2α), ∀ t ≥ 1 , (24)

where gt := maxθ∈C〈∇F (θ̄t), θ̄t − θ〉 ≥ 0. The conclusion (18)
is then derived by summing the above inequality from t = T/2 + 1
to t = T and canceling the duplicated items. Q.E.D.

We notice that due to the structure of ∇fi(θ) in (5), setting
δ 6= 0 is necessary to ensure that the spectral gap ξt = σ1(Mt) −
σ2(Mt) is non-zero, since otherwise the singular values ofMt will
have multiplicity two. Unfortunately, there is no known non-trivial
lower bound on ξt. Thus, one has to set the constant terms in Pt
heuristically (this is also true for PG methods). In the future, we will
try to adapt the recent gap-free/accelerated PCA method [27] to a
decentralized setting.

4. NUMERICAL RESULTS & CONCLUSIONS

The communication network G considered is a randomly generated
Erdos-Renyi graph with N = 50 agents and connectivity p = 0.1.
The doubly stochastic matrix W is designed using the Metropolis-
Hastings rule in [28]. We focus on the matrix completion problem
and consider the movielens100k dataset [29], which contains
105 ratings from m1 = 943 users on m2 = 1682 movies, among
which we assign 8× 104 (resp. 2× 104) of the records for training
(resp. testing) purpose. We simulate the distributed optimization en-
vironment by equally dividing the training set intoN partitions. The
entries of θ̃true are directly observed, i.e.,Ai

s = ekse
>
ls (cf. (2)) and

the problem (1) is set withR = 2×104. We consider both loss func-
tions in (3), (4). To satisfy the convergence conditions in Theorem 1,
for the F-DeFW algorithm, we set Lt = d3 + 2 log te, Pt = 2Lt in
DePM and δ = 10−4 in (5); for the convex square loss (resp. non-
convex Gaussian loss), we set the step size as γt = 2/(t + 1)
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Fig. 1. MSE against the F-DeFW iteration number t: (Left) noise-free ob-
servations; (Right) outlier-contaminated observations. We set σi = 5. Note
the consensus error, maxj∈[N ] ‖θ̄

j
t − θ̄t‖, of F-DeFW are plotted with the

logarithmic scale (observe the different scale on the right y-axis).

Runtime #Matrix-vec. products #Info. exchanges

Target MSE = 1.4 (Noise-free case, movielens100k)

F-DeFW (Sq. loss) 5.774 s 11978 167198
F-DeFW (Gau. loss) 10.548 s 23016 347580
DeFW (Sq., ` = 3) 28.377 s N/A 4440

DeFW (Gau., ` = 3) 160.09 s N/A 18480

Target MSE = 1.25 (Noise-free case, movielens100k)

F-DeFW (Sq. loss) 8.809 s 19018 279838
F-DeFW (Gau. loss) 18.810 s 43220 700372
DeFW (Sq., ` = 3) 45.742 s N/A 5778

DeFW (Gau., ` = 3) 455.91 s N/A 29556

Table 1. Computation and communication costs at different target MSEs.
Notice that each information exchange round in F-DeFW requires sending
a d = (m1 + m2)-dimensional vector, while DeFW requires sending an
m1×m2 matrix. The runtime represents the computation time per agent. It
is calculated by dividing the overall time byN for our experiments performed
on a single-threaded MATLAB environment.

(resp. t−0.75). In addition to the noise-free setting when Zis = 0
for all s, i, we also consider an outliers-contaminated setting when
Zis = pis · Z̃is, where pis is Bernoulli with P (pis = 1) = 0.2 and
Zis ∼ N (0, 5). We compare the performance of the DeFW algo-
rithm [14] (with ` = 3 average consensus steps per iteration) and a
centralized FW algorithm.

We plot the mean square error (MSE) against the F-DeFW it-
eration number t on the testing set in Fig. 1, where the worst MSE
among the agents is evaluated for the decentralized algorithms. Ob-
serve that the MSE resulted from the F-DeFW algorithm follows
closely with that of centralized FW algorithm. It also converges
faster than DeFW and attains consensus gradually.

In Table 1, we compare the computation costs of the algorithms.
As seen from the moderate number of matrix-vector multiplications
required, the F-DeFW algorithm requires less computation time.
Though it also demands more information exchange rounds than
the DeFW algorithm. It is important to note that the size of the
messages exchanged per round for F-DeFW is much smaller (since
d = m1 +m2�m1m2). We remark that the original DeFW algo-
rithm already runs 20 to 30 times faster than an PG algorithm (e.g.,
D-PG [8]) as the latter requires computing a full SVD per iteration.

To conclude, we have proposed a fast and privacy preserving
distributed algorithm for low rank regression, which outperforms the
state-of-the-art in terms of complexity. In future research, we plan
to study an asynchronous version of the fast DeFW algorithm.
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