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ABSTRACT

Extracting inherent patterns from large data using decompositions of
data matrix by a sampled subset of exemplars has found many appli-
cations in machine learning. We propose a computationally efficient
algorithm for adaptive exemplar sampling, called fast exemplar se-
lection (FES). The proposed algorithm can be seen as an efficient
variant of the oASIS algorithm [1]. FES iteratively selects inco-
herent exemplars based on the exemplars that are already sampled.
This is done by ensuring that the selected exemplars forms a positive
definite Gram matrix which is checked by exploiting its Cholesky
factorization in an incremental manner. FES is a deterministic rank
revealing algorithm delivering a tighter matrix approximation bound.
Further, FES can also be used to exactly represent low rank matrices
and signals sampled from a unions of independent subspaces. Ex-
perimental results show that FES performs comparable to existing
methods for tasks such as matrix approximation, feature selection,
outlier detection, and clustering.

Index Terms— Matrix factorization, exemplar selection, low
rank approximation, sparse coding.

1. INTRODUCTION

Exemplar selection (ES) aims at finding a subspace (composed of
a small number of exemplars) that approximates the column span
of a matrix X ∈ Rn×l [2]. From theoretical perspective the aim
is to know how well the column vectors of a matrix can represent
its spectrum, as this can further help in summarizing and visualiz-
ing large datasets of natural scenes, objects, faces, videos, and text
[3, 4]. Further, as opposed to a larger dataset one can improve the ef-
ficiency, memory requirement and computational time of e.g., classi-
fication and clustering algorithms by working on a reduced number
of representative exemplars [5]. This paper considers the problem
of sampling a small number of columns of a matrix X such that
‖X − ΠX‖F is close to ‖X − Xk‖F i.e., error between the tar-
get matrix X and its rank-k approximation Xk with respect to any
unitarily invariant norm [6]. Here, Π is the projection matrix of the
sampled exemplars, and k < r = rank(X). However, this problem
is believed to be NP-hard, as one have to search over all possible

(
l
k

)
choices [7]. This paper proposes a scalable and deterministic greedy
fast exemplar selection (FES) algorithm for this problem. We then
show the application of these selected exemplars for matrix repre-
sentation and in making inferences about the actual underlying data.

FES iteratively samples an exemplar from X by estimating how
well the previously selected exemplars represents the remaining sig-
nals. To achieve this, FES searches for the exemplars which does not
lie in the span of the already selected exemplars. In other words, FES
extracts a linearly independent subset which captures the full range
of the dataset. To this aim, FES ensures that the sampled exemplars
have a positive definite (PD) Gram matrix, which guarantees linear

independence [8]. However, checking positive definiteness of a ma-
trix requires computing its eigenvalues, which is computational ex-
pensive. Hence, this paper proposes a computationally efficient way
using the fact that a PD Gram matrix has a unique Cholesky decom-
position. To handle larger datasets, FES uses incremental Cholesky
decomposition and block matrix inversion algorithms [9]. Our re-
sults demonstrate that FES provides a computationally efficient al-
ternative to existing approaches.

The rest of the paper is organized as follows: In Section 2, we
briefly review the existing approaches to solve the ES problem. In
Section 3, we have mathematically described the motivation behind
the proposed column sampling method, in Section 4 we propose an
efficient algorithm for the ES problem. Section 5 presents the appli-
cations and experimental results. The summary of the paper is given
in Section 7.

2. PRIOR WORK

Various methods to solve the ES problem have been studied exten-
sively in both communities of numerical linear algebra and theoreti-
cal computer science [6]. Since, ‖X−ΠX‖F is lower bounded by
‖X−Xk‖F , a large number of approximation algorithms have been
proposed to sample columns of X such that matrix Π satisfies

‖X−Xk‖F ≤ ‖X−ΠX‖F ≤ f(l, k)‖X−Xk‖F (1)

for some function f(.) [7].
In numerical linear algebra, deterministic solutions to the ES

problem are obtained in the context of rank revealing factorizations
(RRF) [10, 11]. RRF seeks a permutation matrix using which one
can select a well-conditioned collection of columns that spans the
(numerical) range of the matrix X [10]. However, these algorithms
are not preferred mainly due to their large time complexity which
scales to an order of O(n3) for square matrices.

In contrast, the theoretical computer science community has in-
vestigated the ES problem by constructing a low-rank matrix ap-
proximation to X in the spectral or Frobenius norm sense [2]. The
usual solution to this problem is the rank-r matrix Xk = XYYT ,
where the columns of Y are the top r right singular vectors of X ob-
tained using the Singular Value Decomposition (SVD) [7]. When the
rank-r is unknown, leverage-based sampling approaches can be used
where, columns of X are sampled based on the so called “statistical
leverage scores” [12]. However, since SVD is also used for estima-
tion of leverage scores, for larger dataset the running time might be
too large, and in practice singular values can be irrational because of
which one can only compute an approximate SVD. In order to obtain
approximate and fast solutions, one can use random sampling based
approaches, where column are sampled with probabilities propor-
tional to their squared norms [13]. Alternatively, based on trade-off
between speed or a better error bound, methods such as sequential er-

4436978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



ror sampling [14], accelerated sequential incoherence selection (oA-
SIS) [1] and sparse modeling representative selection (SMRS) [15]
can also be used. The proposed algorithm is related to the oASIS
algorithm, and can be seen as its efficient variant. FES gains im-
provement on how the gram matrix necessary for the algorithm is
stored, updated and used. Specifically, instead of storing and updat-
ing the matrix inverse using Nystrom approximation, as suggested in
[1], FES suggest storing and updating the Cholesky factorization of
the matrix, leading to faster computation. In addition, this paper pro-
vides an alternative and simpler derivation of the method underlying
the oASIS algorithm.

3. APPROXIMATE SOLUTION TO THE ES PROBLEM

The ES problem attempts to identify the best exemplars as columns
of matrix XS to represent the entire matrix X in a geometric sense
[4]. This problem can be solved iteratively. Specifically, if any col-
umn xi from matrix X has to be added in matrix XS (of already
selected columns from set S), then the following metric can be used

i = argmax
i*S

‖xi −ΠSxi‖22 = ‖xi −XSX+
S xi‖22 (2)

It computes the distance of vector xi to the space spanned by the set
XS . Here, ΠS is the projection matrix, XSX+

S xi is the projection
of xi on to XS , and + denotes the pseudo-inverse. One can begin
the algorithm with the assumption XS = ∅, and iteratively sample
the column using the criteria of (2). The algorithm can stop when
the following quantity reaches to a threshold value [3]:

min ‖X−XSX+
S X‖F (3)

Problem in (2) appears in various forms in the existing literature re-
lated to column/row/feature selection algorithms [2, 3, 5, 16, 17].
For instance (2) is solved explicitly using pseudo-inverse in SES ap-
proach [14].

Taking the term inside l2-norm and multiplying both sides by
xT
i , the expression in (2) can be rewritten as:

xT
i xi − xT

i XSX+
S xi (4)

Assuming the columns already sampled in XS are independent, the
expression in (4) can be expanded as

xT
i xi − xT

i XS(XT
SXS)−1XT

Sxi (5)

which can be further simplified as

∆i = di − aT
i (W)−1ai (6)

where di = xT
i xi, ai = XT

Sxi and W = XT
SXS . This result is

employed in different ways to govern the sampling rule in existing
approaches [2, 3]. This is preferable as updating a new column in
set S is equivalent to rank-1 update in W and if W is invertible, the
inverse can be computed using block matrix update [9].

4. PROPOSED FES APPROACH

In the proposed FES approach, the matrix XS is build by sequen-
tially sampling exemplars from the training dataset. The proposed
FES method ensures that the sampled columns of XS forms a pos-
itive definite (PD) Gram matrix W. This is because a PD matrix is
the Gram matrix of linearly independent set of vectors [18]. How-
ever, to check if a matrix is PD, one needs to compute the eigenval-

Algorithm 1 Fast Exemplar Selection (FES) Algorithm

Inputs: Training signal matrix X ∈ Rn×l containing l signals
Outputs: Matrix XS ∈ Rn×p with p exemplars
Initialization: s and p

Randomized Step
1: Normalize the data matrix
2: Randomly keep s column indexes in set S and rest in set R.

Deterministic Step
3: Set W = XT

SXS , L = chol(W)
4: Until p > 1

C = L−1XT
SX

∀i ⊂ R, keep the i-th column as a dictionary atom as:
∆← diag(CTC), i← argmin[∆(i)]
If ∀i∆i ≥ 1 Go to (5);
Else Update

d←
√

1−∆i, c← C(:, i), S ← S ∪ i,, R← R/i

L−1 ←
[

L−1 0

−(1/d)cTL−1 1/d

]
, p← p− 1

5: Randomly sample remaining p columns from XR as exemplars.

ues, which is computationally expensive. To address this issue, the
proposed approach exploits the fact that a PD matrix has a unique
Cholesky decomposition. Assuming the columns of X are normal-
ized, and xi is the new sampled exemplar in an iteration, one can
write the updated Gram matrix as [8, 9]:

Wk+1 =

[
XT

SXS a
aT xT

i xi

]
=

[
Wk a
aT 1

]
(7)

Assuming Wk to be SPD matrix such that there exists a unique
lower triangular Cholesky decomposition Wk = LkLT

k , the up-
dated Gram matrix can be expressed via block matrix update as [9]:[

Wk a
aT 1

]
=

[
Lk 0
cT d

] [
LT

k cT

0 d

]
=

[
LkLT

k Lkc
LT

k cT cT c + d2

]
(8)

where, c is a real vector, and d a positive scalar. Comparing left and
right sides of (8), we have

a = Lkc or c = L−1
k a and d =

√
1− cT c (9)

where Lk is the Cholesky factor of Wk, and d a positive scalar. In
other words, the matrix Wk+1 is PD, invertible and has a unique
Cholesky decomposition if and only if, cT c < 1. Hence, FES pro-
poses to iteratively sample columns using the criteria cT c < 1. Fur-
ther updating L−1

k using block matrix inversion is preferable, as Lk

is lower triangular. Now, after back substituting the variables in (9)
we have

d2 = 1− aT
i (L−1T

k L−1
k )ai = 1− aT

i (W−1
k )ai (10)

It can be verified that (10) reduces to (6) when the data is nor-
malized, and thus the sampling rule in FES is in other way a new
formulation of the standard result. Theoretically data normalization
doesn’t affect the sampling metric, but it certainly affects its estima-
tion numerically. Further, the proposed method has the following
advantages: 1) cT c = ‖c‖22 i.e., sum of the square of entries of c,
which is faster to compute than ∆, 2) normalization saves from the
computation of subtraction in (6) for each candidate in each itera-
tion, allowing us to just ensure that cT c < 1, 3) instead of W−1,
estimating L−1 is efficient as it is a lower triangular matrix. In addi-
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tion, one can speed up this computation via approximating L−1
k+1 by

performing rank-1 updates to the inverse matrix L−1
k i.e.,[

Lk 0
cT d

]−1

=

[
L−1

k 0
−(1/d)cTL−1

k 1/d

]
(11)

The pseudo-code of the proposed approach is shown in Algorithm 1.

4.1. Comparison with Existing Works

Similar to FES, various sequential sampling methods have been pro-
posed in the past. The main difference lies in how projection matrix
ΠS or equivalently W−1 is computed or approximated after each
iteration. Further, note that the updated matrix Wk+1 is invertible
only if its Schur complement is positive, and it can be verified that ∆
is in-fact the Schur complement [18]. For instance, instead of com-
puting W or its inverse directly, work in [19] proposed an iterative
method to obtain a sequence of gradually better approximations, and
called the approximation of ∆ the generalized stretch. Similarly,
In [20], authors proposed a recursive formula for the approxima-
tion of projection matrix ΠS , using the Schur compliment and the
block matrix updates. In [17], authors introduced (6) as dependency
margin for optimal feature selection. In [1], the oASIS algorithm ex-
ploits the Nystrom approximation of the matrix W to compute ∆, in
contrast to Cholseky decomposition employed in the proposed FES
algorithm1. The proposed FES method can be seen as a variant of
oASIS algorithm with an alternative and computationally efficient
implementation. What differentiates the algorithms is (i) the logic
used to motivate and justify the use of the Schur complement and
(ii) the method of computing the inverse W−1.

4.2. Computational Complexity

The rate-limiting step of Algorithm 1 is the computation of L−1
k for

l training signals, and (11) allows this to be performed using L−1
k−1.

The complexity of a single iteration is thus O(kl). If p columns are
sampled in total, then

∑p
k=1 kl = p(p + 1)l/2 entries need to be

updated. Thus the resulting complexity of the FES approximately
scales as O(p2l). However, in general p < l and L being lower
triangular does not require estimating all its entries. This makes the
proposed algorithm considerably more efficient than existing meth-
ods for which the time complexity scales as O(nl2) [15, 21].

5. APPLICATIONS AND EXPERIMENTAL RESULTS

This section demonstrates the use of FES for matrix approximation,
feature selection and clustering. As a prerequisite it is shown that
FES fulfills a sufficient condition for all the above mentioned prob-
lems i.e., the columns of XS captures the full range of the training
set or X = ΠSX.

5.1. Exact Matrix Recovery and Low Rank Approximation

The proposed FES approach yields exact matrix recovery, which fol-
lows from the fact that the sampled exemplars span the whole space
of X. To understand this, let the matrices X and XS are of rank
r and r1, respectively. Thus, when r1 = r exact recovery of X is
guaranteed, and the proof follows by induction. In each iterations

1We came across [1] at the time of development of our algorithm and
thus we have mentioned the same in the title, to give proper attribution to the
oASIS algorithm.
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Fig. 1. Approximation error vs number of dictionary atoms for (a)
Face, (b) and (c) UoS datasets.

until the condition cT c < 1 is violated, any new column will be in-
dependent to previously sampled columns, as the Gram matrix will
be PD. Similar arguments follows for the low rank approximation
problem. The aim is to minimize the objective ‖X−Xk‖2F i.e., the
error between the data matrix X and a low rank approximating ma-
trix Xk. In this case, one needs to terminate the FES algorithm after
selecting k < r linearly independent columns of X.

To illustrate the performance of FES for matrix approximation,
Fig.1 shows the approximation error as a function of number of dic-
tionary atoms sampled, for a rank-150 matrix taken from the syn-
thetic union-of-subspaces UoS dataset [22] and a rank-631 matrix
taken from the Yale-B face dataset [23]. Other sampling based ap-
proaches compared in this and following experiments are oASIS [1],
uniform random sampling (RS) [6], sequential error sampling (SES)
[14] and leverage sampling (LES) [12]. It can be observed that only
SES, FES and oASIS achieve exact recovery when the number of
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Fig. 2. Normalized cut ratios for clustering task on the face dataset.

sampled exemplars equals the rank. Note that the error curves of
oASIS and FES are similar but not exactly same. The reason could
be the error introduced in approximating the projection matrix via
different methods. One can observe similar decay in the approxima-
tion error for both the synthetic and real datasets. To investigate fur-
ther, Fig.1 (c) shows the error curves for the proposed method when
for cT c < 1: 1) the candidate with the minimum value is sampled,
denoted by FES, 2) the candidate is sampled randomly, denoted by
FES1. It can be observed that FES1 with random sampling achieves
best error curve with a significant improvement over other methods.
This shows that the error curves for FES/oASIS trails behind SES
not because W−1 is approximated, but in the way how candidates
are selected. Although, this needs further investigation which we
defer as future work.

5.2. Optimal Feature Selection in Union of Subspaces

In optimal feature selection (OFS) problem, every signal is repre-
sented using only signals from within its own subspace. This re-
quires that at least t linearly independent columns that span each
t-dimensional subspace exist in X. When this occurs, X provides
a complete reference set for each subspace present in the data. It
has been proved in [24, 25] that whenever XS yields exact matrix
recovery it is guaranteed that XS also provides a complete reference
set for a union of subspaces. Thus, using results in [24, 25] and of
Section 5.1, produce guarantees that OFS occurs for the decomposi-
tion obtained via FES. This can also be verified from Fig. 1(a) which
shows exact matrix recovery for FES on UoS dataset.

5.3. Application to Sparse Representation Based Clustering

In recent years, signal representations using a subset of training sig-
nals, called exemplars, has been widely explored in the field of ma-
chine learning [15, 26] and has been successfully applied in the con-
text of classification [27, 28], clustering [21], and low-rank matrix
approximation [29]. Here, the objective is to represent each signal
in the dataset as a linear combination of a small subset of exemplars
[15]. Specifically, one seeks the factorization A for a collection of
signals as columns of matrix X by minimizing the objective function

‖X−XA‖2F =

l∑
i=1

‖xi −Xai‖22, or

‖X−XSA‖2F =

l∑
i=1

‖xi −XSai‖22

(12)

Here, one represent each training signal in terms of other signals
in the dataset. Depending on the application, additional constraints
such as convexity or sparsity can also be imposed over A, as done
in case of approaches such as archetypal analysis [30], sparse sub-
space clustering (SSC) [21], self-expressive decomposition [22], and
sparse modeling by representative selection (SMRS) [15].

Sparse representation based clustering, uses the fact that a signal
can be sparsely represented using exemplars from its own class (or
subspace) [31]. Thus using FES, one can cluster the data using the
sparsity patterns of the obtained decomposition i.e., A. In order to
illustrate the performance of FES for clustering, we follow the ap-
proach of [22]. Here A is considered as representing the edges of
a bi-partite graph for which the average cost of a normalized cut is
computed, for all the classes as a function of number of dictionary
atoms sampled. This cost is a measure of how easy it is to cluster the
graph into its correct classes [32]. Fig. 2, shows the normalized cut
ratios with maximum number of dictionary atoms to sample equal
to 30% of the whole data, on a subset of the Yale-B Face dataset
consisting of 10 different subjects under various illumination condi-
tions. One can observe that FES, SEED and SES achieve normalized
cuts less than nearest-neighbor (NN) and SSC methods. The gap be-
tween SSC and FES grows as the number of dictionary atoms are
increased. The performance of LS and RS appears to flatline just
near the cut ratios for NN and SSC methods.

6. REPRODUCIBLE RESEARCH

For reproducible-research purposes, a GPL Matlab implementation
and Creative Commons data related to the presented work are avail-
able on request via votrix13[at]ieee[dot]org.

7. SUMMARY

This paper introduced FES, a low complexity rank revealing exem-
plar selection approach. FES sequentially sample linearly indepen-
dent exemplars from the dataset. This is done by seeding an exem-
plar matrix column by column, such that it has a PD Gram matrix.
To ensure PD, we exploited the Cholesky decomposition and block
matrix inversion properties. Thus, using the rank revealing property
of FES approach, one can analyze and discover structures, patterns
and other properties of the training signals. We have experimentally
demonstrated that FES performs well for various signal processing
and machine learning problems, ranging from matrix approximation,
to feature selection and clustering.
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[2] A. Çivril, “Column subset selection problem is UG-hard,”
Journal of Computer and System Sciences, vol. 80, no. 4, pp.
849 – 859, 2014.

[3] F. de Hoog and R. Mattheij, “Subset selection for matrices,”
Linear Algebra and its Applications, vol. 422, no. 23, pp. 349
– 359, 2007.
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