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ABSTRACT

In this paper, we present a technique for reducing the size
of the dictionary in sparse signal reconstruction by formulat-
ing an initial dictionary containing elements that spans bands
of the considered parameter space. We allow for the use of
this banded dictionary in a first-stage estimation procedure,
in which large parts of the parameter space is discarded for
further analysis, thereby reducing the overall computationally
complexity required to allow for a reliable signal reconstruc-
tion. We illustrate the presented principle on the problem of
estimating sinusoidal components corrupted by white noise.

Index Terms— Sparse signal reconstruction, dictionary
learning, convex optimization

1. INTRODUCTION
A wide range of applications yields signals that may be well
approximated using a sparse reconstruction framework, and
the area has attracted dramatic interest in the recent litera-
ture (see, e.g., [1–3] and the references therein). Much of
this work has focused on formulating convex algorithms that
exploit different sparsity inducing penalties, thereby encour-
aging solutions that are well represented using just a few el-
ements from some known dictionary matrix, D. If the dic-
tionary is appropriately chosen, even very limited measure-
ments can be shown to allow for an accurate signal recon-
struction [4, 5]. Recently, increasing attention has been given
to signals that are best represented using a continuous param-
eter space. In such cases, the discretization of the parameter
space that is typically used to approximate the true parame-
ters will not represent the noise-free signal exactly, resulting
in solutions that are less sparse than desired. This problem has
been examined in, e.g., [6–8], wherein discretization recom-
mendations and new bounds of the reconstruction guarantees
were presented, taking the grid mismatch into consideration.
Typically, this results in the use of large and over-complete
dictionaries, which, although quite efficient, often violate the
assumptions required to allow for a perfect recovery guaranty.
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As an alternative, one may formulate the reconstruction
problem using a continuous dictionary, such as in, e.g., [9–
11]. Such formulations typically use an atomic norm penalty,
as introduced in [12], which allows for a way to determine the
most suitable convex penalty to recover the signal, even over
a continuous parameter space. Such a solution often offers
an accurate signal reconstruction, but typically requires one
to solve large and rather complicated optimization problems,
thereby limiting the size of the considered problem.

In this work, we examine an alternative way of approach-
ing the problem, proposing the use of wide-band dictionary
elements, such that the dictionary is formed over B subsets
of the continuous parameter space. In the estimation proce-
dure, the activated subsets are retained and refined, whereas
non-activated sets are discarded from the further optimization.
Without loss of generality, the proposed principle is here il-
lustrated on the problem of estimating the frequencies of K
complex-valued sinusoid corrupted by white circularly sym-
metric Gaussian noise. This is a classical estimation problem,
originally expressed using a sparse reconstruction framework
in [13], and having since attracting notable attention (see, e.g.,
[14–17]). Here, using the classical formulation, the resulting
sinusoidal dictionary will allow for aK-sparse representation
of frequencies on the grid, whereas the grid mismatch of any
off-grid components will typically yield solutions with more
than K components. Extending the dictionary to use a finely
spaced dictionary, as suggested in, e.g., [8], will yield the de-
sired solution, although at the cost of an increased complexity.
In this work, we instead proceed to divide the spectrum into
B (continuous) frequency bands, each band possibly contain-
ing multiple spectral lines. This allows for an initial coarse
estimation of the signal frequencies, without (significantly)
increasing the risk of missing any off-grid components.

The proposed principle may also be used when solving the
reconstruction problem using gridless methods, such as the
methods in [9–11]. It has been shown that if the reconstruc-
tion problem allows for any prior knowledge about the loca-
tion of the frequencies, e.g., the frequencies are located within
a certain region of the spectrum, one may use this information
to improve the estimates [18]. The proposed method may then
be used for attaining such prior information, and thus improv-
ing the overall estimates as a result.
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Fig. 1. The inner-product of a dictionary containing L = 50
(narrowband) candidate frequency elements and the noise-
free signal, with N = 100.

2. PROBLEM STATEMENT
Consider the problem of estimating the frequencies fk, for
k = 1, . . . ,K, of a measured signal yn, with

yn =

K∑
k=1

βke
2iπfktn + εn (1)

for n = 1, . . . , N , and where K denotes the (unknown) num-
ber of sinusoids in the signal. Furthermore, let βk and fk
denote the complex amplitude and frequency of the kth fre-
quency, respectively, tn the nth sample time, and εn the ad-
ditive noise at time tn. The classical sparse formulation of
this estimation problem, as presented in [13], considers the
LASSO minimization (see also [19])

min
x

1

2
||y −Dx||22 + λ||x||1 (2)

with

y =
[
y1 . . . yN

]T
(3)

D =
[
d1 . . . dL

]
(4)

d` =
[
e2iπf̂`t1 . . . e2iπf̂`tN

]T
(5)

where f̂` for ` = 1, . . . , L denotes the L� K candidate fre-
quencies in the dictionary, D, typically selected to be closely
spaced to allow for minimal grid mismatch, and (·)T the trans-
pose. The penalty on the 1-norm of x will ensure that the
found solution, x̂, will be sparse, with λ denoting a user pa-
rameter governing the desired sparsity level of the solution.
The desired frequencies, as well as their order, are then found
as the non-zero elements in x̂. As shown in [8], the number
of dictionary elements, L, typically has to be large to allow
for reliable high-resolution frequency estimates.

As an alternative, one may use a zooming procedure, where
one first employ an initial coarse frequency dictionary, D1,
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Fig. 2. The inner-product of a dictionary containing B = 50
(wide-band) candidate frequency elements and the noise-free
signal, with N = 100.

and then employ a fine dictionary, D2, centered around the
initially found frequency estimates (see, e.g., [20,21] for sim-
ilar approaches). This allows for computationally efficient so-
lution of the optimization problem in (2), but suffers from the
problem of possibly missing off-grid components far from the
initial coarse frequency grid. This is illustrated in Figure 1,
where the inner-product between the dictionary and the sig-
nal is depicted together with the location of the true peaks.
In this noise-free example, we used N = 100 samples and
L = 50 dictionary elements, with one of the frequencies be-
ing situated in between two adjacent grid points in the dictio-
nary. As seen in the figure, the coarse initial estimate fails to
detect the presence of the second sinusoid, which is thereby
discarded as a possibility in the following refined estimate.
Increasing the number of candidate frequencies will result
in that the side-lobes of the more finely spaced frequencies
will lessen the gap between the frequency grid points, mak-
ing the inner-product between the dictionary and the signal
larger for sinusoidal components that lies between two can-
didate frequencies. However, doing so will increase compu-
tational complexity correspondingly, begging the question if
one may retain a low number of candidate frequencies, while
reducing the likelihood of missing any off-grid components.
This is the problem we examine in the following.

3. INTEGRATED WIDE-BAND DICTIONARIES
To allow for off-grid components, we here instead propose
forming a wide-band dictionary overB frequency bands, with
each integrated wide-band dictionary element being formed
as

ab =

∫ fb+1

fb

e2iπftdf (6)

where fb and fb+1 are the two frequencies bounding the fre-
quency band, for b = 1, . . . , B. The resulting elements are
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then gathered into the dictionary, A, formed as

A =
[
a1 . . . aB

]
(7)

with the bth dictionary element at time tn being formed as

ab,n =
e2iπfb+1tn − e2iπfbtn

2iπtn
(8)

where ab,n denotes the nth element in column b of A. The
inner-product between the proposed dictionary, A, and the
earlier signal is shown in Figure 2, using the same number of
dictionary elements as in that case, i.e., with B = 50, clearly
indicating that the proposed dictionary is able to locate the
off-grid frequency. This is due to the wide-band nature of the
proposed dictionary, which thus has less power concentrated
at the grid points, but covers a wider range of frequencies, not
reducing to zero, or close to zero, anywhere within the band
(as is the case for the narrowband dictionary elements). As a
result, using the wide-band dictionary elements, it is possible
to use a smaller initial dictionary, thereby reducing the com-
putational complexity, without increasing the risk of missing
components in the signal.

4. EFFICIENT IMPLEMENTATION
To form a computationally efficient solution of the problem
and to showcase the complexity reduction provided by the
method proposed in this paper, we proceed to solve (2) using
the popular ADMM algorithm [22]. In order to do so, the vari-
able x is split into two variables, here denoted x and z, after
which the (scaled) augmented Lagrangian may be formulated
as

Lx,z,u = ||y −Ax||22 + λ||z||1 + ρ||x− z + u||22 (9)

where u is the scaled dual variable and ρ is the step length
(see [22] for a detailed discussion). The minimization is thus
formed by iteratively solving (9) for x and z, as well as up-
dating the scaled dual variable u. This is done by finding
the (sub-)gradient for x and z of the augmented Lagrangian,
and setting it to zero, fixing the other variables to their latest
values. The steps for the jth iteration are thus

x(j+1) =
(
AHA+ ρI

)−1
(
AHy + z(j) − u(j)

)
(10)

z(j+1) = S(x(j+1) + u(j), λ/ρ) (11)

u(j+1) = u(j) + x(j+1) − z(j+1) (12)

where (·)H denotes the Hermitian transpose, (·)(j) the jth it-
eration, and S(x, κ) the soft threshold operator, defined as

S(v, κ) =
max (|v| − κ, 0)

max (|v| − κ, 0) + κ
� v (13)

where κ� v denotes the element-wise multiplication for any
vector v and scalar κ.

Settings Complexity ratio Grid distance (10−3)
D1000 1 0.50
B20 Q25 31 1.0
B20 Q40 7 0.63
B40 Q25 26 0.50
B40 Q40 7 0.31
B75 Q25 16 0.27
B75 Q40 6 0.17
B75 Q323 1 0.02

Table 1. Complexity reduction compared to using the full
dictionary and the distance between the final grid for differ-
ent settings. Here, D1000 indicates the one-stage narrow-
band dictionary using a dictionary with L = 1000 elements,
whereas B20 Q25 indicates the two-stage dictionary using
B = 20 wide-band elements, followed by Q = 25 narrow-
band elements in the second-stage dictionary.

The computationally most demanding part of the resulting
ADMM implementation is to form the inverse in (10) and to
calculate AHy. These steps are often done by QR factorizing
the inverse prior to the iteration, so that this part is only calcu-
lated once, and then using the factors when forming the inner
product. The total computational cost for the step in (10) de-
pends on the size of the matrix A (or, correspondingly, D, if
using the narrowband dictionary). If A is an N × L matrix,
and if L < N , computing the inverse will cost approximately
L3 operations, plus an additional L2N operations to form the
Gram-matrix AHA. Furthermore, to compute AHy requires
LN operations, and the final step to compute x costs L2 op-
erations. If instead L > N , one may make use of the Wood-
bury matrix identity [23], allowing the inverse to be formed
using N3 + 3LN2 operations, whereafter one has to com-
pute AHy and the final matrix-vector multiplication, together
costing LN + L2 operations. In total, the x-step will have
the cost of roughly L3 + (N + 1)L2 + NL, if L < N , or
N3 + 3LN2 + LN + L2, if N < L.

Since using the banded dictionary allows for a smaller dic-
tionary, one may calculate the computational benefit of using
the integrated dictionary as compared to just using an ordinary
dictionary with large L. Consider using only a single-stage
narrowband dictionary, D1, with L > N dictionary elements.
This requires C1 = N3 + 3LN2 + L2 + LN operations if
using the above ADMM solution, with the dictionary D1 in
place of A in (10)-(12). If, on the other hand, one uses a
two-stage wide-band dictionary with N dictionary elements
in the initial coarse dictionary, A1 (which is more than re-
quired, but simplifies the calculations), the cost of forming
the first stage (coarse) minimization is C2 = 2(N3 + N2).
By taking the difference, i.e., forming R = C1 − C2 =
N3 + 3LN2 + L2 + LN − 2(N3 + N2), one obtains the
available computational resources, R, that are left for a sec-
ond stage dictionary, A2, without increasing the overall com-
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Fig. 3. The probability of (top) correctly estimating and (bot-
tom) underestimating the number of spectral lines, for the
(single-stage) narrowband dictionary, using L = 1000 el-
ements (cyan, dashed) and L = 75 elements (green, dot-
dashed), and for the wide-band dictionary, using B = 75
elements (blue, dotted), and the (two-stage) wide-band dictio-
nary, using B = 75 elements, together with Q = 25 elements
per activated bands in the refining dictionary (red, solid).

putational cost above that of the narrowband dictionary so-
lution. Assuming that the A2 dictionary has Z > N grid
points available, one may deduce the grid size by solving
R = N3+3N2Z+Z2+ZN , yielding that one is able to use a
fine grid ofZ = (−3N2+

√
9N4 + 2N3 +N2 + 4R−N)/2

candidates in a secondary refinement step, without increasing
the total computational complexity, as compared to using the
single stage narrowband dictionary. To illustrate the result-
ing difference, consider the following settings: L = 1000 and
N = 100, yielding Z ≈ 936 grid points to be distributed
over the activated bands. If the number of activated bands are
three in the settings above, that would yield a grid separation
of 1.6 · 10−5, which should be compared to the ordinary dic-
tionary having a grid separation of 5 · 10−4; a difference of
roughly a factor 31.

5. NUMERICAL EXAMPLES
In this section, we proceed to examine the performance of
proposed method, initially illustrating that the proposed (two-
stage) wide-band estimator has the same estimation quality
as when using the ordinary (one-stage) Lasso estimator. We
considered a signal consisting of N = 75 samples contain-
ing K = 3 (complex-valued) sinusoids corrupted by a zero-
mean white Gaussian noise with signal-to-noise ratio (SNR)
of SNR= 10dB. In each simulation, the sinusoidal frequen-
cies are drawn from a uniform distribution, over [0, 1), and all
the amplitudes have magnitude 1 and phase drawn from a uni-
form distribution, over [0, 2π). The performance is then com-
puted using three different dictionaries, namely the (ordinary)
narrowband dictionary, D, with L = 1000 and L = 75 ele-
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Fig. 4. Mean-square error curves for different SNR levels
for the single-stage narrowband dictionary, using L = 1000,
as compared to the two-stage dictionary, using B integrated
wide-band elements in the first stage, followed by Q narrow-
band elements in the second stage.

ments, respectively, and the proposed wide-band dictionary,
A, using B = 75 elements, followed by a second-stage nar-
rowband dictionary using Q = 25 elements per active band.
For each dictionary, we evaluate the performance for vary-
ing values of the user parameter α using λ = αλmax, where
λmax = maxi |xHi yi| is the smallest tuning parameter value
for which all coefficients in the solution are zero [24]. Each
estimated result is then compared to the ground truth, count-
ing the number of correct and underestimated model order es-
timates. The result is shown in Figure 3. As can be seen from
the figure, the best results are achieved when α ≤ 0.65, in
which case the proposed wide-band dictionary, using B = 75
bands, followed by a second stage narrowband dictionary,
with Q = 25 per activated band, have similar performance
to the narrowband dictionary using L = 1000 dictionary el-
ements. Proceeding, we asses the mean-square error (MSE)
for different settings of the two-stage dictionary, showing the
MSE as a function of SNR for various sizes of the first-stage
wide-band dictionary (B) and second-stage narrowband re-
fining dictionary (Q). Figure 4 shows the resulting MSE, for
the estimates with correctly estimated model order; Table 1
shows the corresponding complexity cost and the final grid
distance of the second-stage dictionary. As can be seen from
the figure, the two-stage dictionary using a wide-band dic-
tionary, with B = 40 bands, followed by a refining dictio-
nary using Q = 25 narrowband elements, achieves the same
performance as the single-stage narrowband dictionary using
L = 1000 elements, although the latter requires about 26
times fewer operations. Furthermore, it may be noted that
using the same overall complexity, as resulting from using
B = 75 and Q = 323, we achieve 25 times higher resolu-
tion as compared to the single-stage dictionary. All results
are computed using 1000 Monte-Carlo simulations.
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