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ABSTRACT

In this paper, we propose a supervised dictionary learning al-
gorithm that aims to preserve the local geometry in both di-
mensions of the data. A graph-based regularization explicitly
takes into account the local manifold structure of the observa-
tions. A second graph regularization gives similar treatment
to the feature domain and helps in learning a more robust
dictionary. Both graphs can be constructed from the train-
ing data or learned and adapted along the dictionary learn-
ing process. The combination of these two terms promotes
the discriminative power of the learned sparse representations
and leads to improved classification accuracy. The proposed
method was evaluated on several different datasets, represent-
ing both single-label and multi-label classification problems,
and demonstrated better performance compared with other
dictionary based approaches.

Index Terms— supervised dictionary learning, sparse
coding, graph Laplacian, classification

1. INTRODUCTION

Dictionary learning (DL) aims to learn a set of atoms such
that a given signal can be well approximated by a sparse lin-
ear combination of these atoms. The standard DL problem is
formulated as

arg min
D,X
‖Y −DX‖2F s.t. ‖xi‖0 ≤ T ∀i (1)

where Y ∈ Rn×N is the data matrix, X ∈ RK×N con-
tains the sparse representations and D ∈ Rn×K is an over-
complete dictionary with normalized columns (atoms).

Despite the popularity of standard DL methods in many
domains, their performance in classification tasks is sub-
optimal, since an accurate reconstruction is not as important
for classification as the discrimination capability of the dic-
tionary. This motivates the emergence of supervised DL
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techniques, exploiting both the existing label information and
the underlying structure of the data.

Some of these methods attempt to learn a separate sub-
dictionary for each class (e.g. [1–5]). Consequently, the
sparse codes over the learned dictionary are used as fea-
tures on which a classifier is trained. More sophisticated
approaches (e.g. [6–11]) learn a discriminative dictionary
by introducing a classification-error term into the objective
function, and enforcing some discriminative criteria on the
optimized sparse coefficients. By doing so, these methods
form a unified learning problem and learn the dictionary and
classifier jointly.

Of the latter category, we focus on the Label Consistent
K-SVD (LC-KSVD) method [9] for joint learning of an over-
complete dictionary D and an optimal linear classifier W :

arg min
D,W,A,X

‖Y −DX‖2F + α‖Q−AX‖2F + β‖H −WX‖2F

s.t. ‖xi‖0 ≤ T ∀i,
(2)

where H ∈ Rq×N is a binary matrix containing the labels of
the training data (out of q possible classes), and Q ∈ RK×N
associates label information with each dictionary atom, thus
forcing signals from the same class to have similar sparse
representations. The minimized objective hence balances be-
tween the reconstruction error ‖Y −DX‖2F , the label consis-
tency ‖Q−AX‖2F and the classification error ‖H −WX‖2F .
These terms can be fused together, leading to a standard for-
mulation:

arg min
D̃,X

∥∥∥Ỹ − D̃X∥∥∥2

F
s.t. ‖xi‖0 ≤ T ∀i, (3)

where Ỹ =

 Y√
αQ√
βH

 and D̃ =

 D√
αA√
βW

.

Equation (3) can be efficiently solved using the K-SVD
algorithm [12], which iteratively alternates between a sparse
coding step (optimization over X) and a dictionary update
step (that updates each dictionary atom in D̃ along with its
related coefficients from X). Having completed the training
process, the individual components D and W can be recov-
ered from D̃. Consequently, classification of a new signal
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is simply performed by sparse coding over the dictionary D
and applying the learned classifier W on the resulting sparse
coefficient vector, choosing the class that yields the highest
score.

In [13], we have presented an unsupervised DL algorithm
for graph signals. The algorithm takes into account the under-
lying structure of the data in both the feature and the manifold
domains using graph smoothness constraints. Furthermore,
the underlying structure, encapsulated by a graph Laplacian
matrix, can be learned within the dictionary learning process
to promote the desired smoothness.

In this paper, we propose an extension of our dual graph
regularized DL algorithm to a supervised setting by apply-
ing the same ideas to the LC-KSVD approach [9]. The nov-
elty of the LC-KSVD algorithm lies in the requirement that
objects from the same class have similar sparse codes over
some dictionary. While this method was shown to yield satis-
factory classification results, outperforming other dictionary
based methods (e.g. [12], [8], [1]), we argue that optimizing
a separate sub-dictionary for each class or directly relating
the dictionary atoms with specific classes is overly restric-
tive and highly sensitive to the initialization of the algorithm.
We therefore replace the label consistency constraint with a
graph-based smoothness regularization that leverages the la-
bel information and promotes the discriminative nature of the
sparse codes. Additionally, we propose to simultaneously
take into account the underlying structure of the training data
in the feature domain such that the feature dependencies are
preserved in the learned dictionary atoms.

In the sequel, we describe the proposed algorithm and
demonstrate its efficiency in simulations.

2. GRAPH-CONSTRAINED SUPERVISED
DICTIONARY LEARNING

2.1. Introducing the Data Manifold Structure

Our proposed algorithm is based on the LC-KSVD ap-
proach [9]. In order to take into account the local geo-
metrical structure of the data manifold, we shall model the
relationships between different data samples using a graph
and require smoothness of the sparse codes over the graph
topology.

Given a set of training samples {y1, ..., ym} ∈ Rn, let
us construct a weighted graph M with m vertices, where
each node represents a training data point. The weight wij
assigned to the edge connecting the i-th and j-th nodes is de-
signed to be inversely proportional to the distance between
them. A common choice uses a Gaussian kernel function

wij = exp

(
−‖yi − yj‖

2
2

εM

)
. (4)

where εM is a properly chosen scale parameter. The graph
adjacency matrix WM consists of the edge weights wij . The

graph Laplacian LM is then defined as LM = DM −WM,
where the degree matrix DM is a diagonal matrix whose en-
tries are DMii =

∑
j wij .

Following ideas from manifold learning and spectral
graph theory, the graph Laplacian LM can be used as a
smoothness operator to preserve the local manifold structure.
Similarly to the methods proposed in [14,15], we incorporate
LM into the objective function as a regularizer of the form
Tr(XLMX

T ). Denoting the i-th column of X by xi, we
observe that

Tr(XLMX
T ) =

1

2

∑
i,j

wij‖xi − xj‖22. (5)

This term therefore encourages similar signals, having a large
proximity measure wij , to have similar sparse codes, thus sat-
isfying the commonly known manifold assumption [16]. In
other words, it promotes smoothness of the obtained sparse
representations X along the geodesics of the underlying data
manifold, described by the graph Laplacian LM.

Replacing the original label consistency term with the
graph regularization, the new DL problem formulation reads

arg min
D,W,X

‖Y −DX‖2F + β‖H −WX‖2F + γTr(XLMX
T )

s.t. ‖xi‖0 ≤ T ∀i.
(6)

Fusing the first two components together similarly to the form
presented in Equation (3), we obtain the graph-regularized su-
pervised DL problem

arg min
D̃,X

∥∥∥Ỹ − D̃X∥∥∥2

F
+ γTr(XLMX

T )

s.t. ‖xi‖0 ≤ T ∀i
(7)

where Ỹ =

[
Y√
βH

]
and D̃ =

[
D√
βW

]
.

2.2. Introducing Feature Interdependencies

In order to take into account the interdependencies in the fea-
ture domain as well, we shall construct a second graph to
model the relationships between different features, and re-
quire smoothness of the dictionary atoms over this new graph.
That is, if two features behave similarly across the training
signals, this behavior should be reflected in the structure of
the learned atoms. Explicitly, given the set of training samples
{y1, ..., ym} ∈ Rn, let us construct a weighted graph G with
n vertices, where each node represents a feature (correspond-
ing to a row in the data matrix). The weight assigned to the
edge connecting the i-th and j-th nodes is again designed to
be inversely proportional to the distance between them using
a Gaussian kernel. The graph adjacency matrix WG consists
of the edge weights, DG is the corresponding degree matrix,
and the graph Laplacian is defined as LG = DG −WG .
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In a symmetric view to the manifold graph regularization,
the feature graph should be integrated through a regulariza-
tion term of the form Tr(DTLGD) applied to the dictionary
matrix D. Since in the current formulation (7) the dictionary
D only occupies a subset of the matrix D̃, we shall zero-pad
LG to the dimension of D̃:

L̃G =

[
LG 0
0 0

]
(8)

As the extended matrix L̃G satisfies D̃T L̃GD̃ = DTLGD, the
regularization may equivalently be imposed on D̃.

The result is the dual graph constrained DL problem:

arg min
D̃,X

∥∥∥Ỹ − D̃X∥∥∥2

F
+ γTr(XLMX

T ) + ρTr(D̃T L̃GD̃)

s.t. ‖xi‖0 ≤ T ∀i
(9)

Solving this problem requires significant modifications of the
K-SVD algorithm. This can be done using the graph2DL
algorithm we proposed in [13] that reflects the added restric-
tions. Upon completion of the learning process,D andW can
be recovered from D̃, and classification is again performed by
sparse coding the test signals using D and applying the clas-
sifier W on the resulting coefficients.

2.3. Learning Dependencies

The feature dependencies were so far inferred from the pat-
terns detected in the training set. For this purpose, an initial
weight matrix WG for the features graph can be constructed
by computing the pairwise distances between rows in the data
matrix Y , which correspond to the different features:

wij = exp

(
−‖Y (i, :)− Y (j, :)‖22

εG

)
(10)

To better handle partial correlations, these dependencies
can be learned and adapted along with the dictionary learning
process, as previously suggested in [13]. Having obtained
an intermediate dictionary D, the graph can be re-estimated
based on the dictionary instead of the original input data Y ,
according to the following optimization problem:

arg min
LG∈Ωn

L

ρTr(DTLGD) + µ‖LG‖2F , (11)

where

ΩNL = {L ∈ RN×N | L = LT , Lij ≤ 0 (i 6= j),

L1 = 0, T r(L) = N}
(12)

defines the set of trace-normalized valid graph Laplacian ma-
trices of sizeN×N . The term ‖LG‖2F was added to the objec-
tive function to control the sparsity of the resulting Laplacian

matrix. In a similar manner, the manifold graph Laplacian
LM may also be adapted by solving

arg min
LM∈Ωm

L

γTr(XLMX
T ) + η‖LM‖2F . (13)

Both (11) and (13) can be cast as quadratic problems with lin-
ear constraints which could be solved using existing convex
optimization tools, as elaborated in [17].

The complete algorithm, as summarized in Algorithm 1,
is assembled by alternating between the graph constrained su-
pervised DL problem posed in Equation (9), and adapting the
Laplacian matrices LG and LM.

Algorithm 1 Graph Constrained Supervised Dictionary
Learning

- Initialize D̃(0)

- Iterate for k = 1, 2, ...
• Run a few iterations of graph2DL (see [13], Al-

gorithm 3), initialized with D̃(k−1), to solve Equa-
tion (9) and obtain D̃(k), X(k).

• Update the graph Laplacians (Equations (11),(13)).
- Return D̃(k), X(k)

3. EXPERIMENTAL RESULTS

3.1. Single-Label Classification

First, we evaluate the performance of the proposed algorithm
for single-label image classification on the AR Face database
[18] and on the Extended YaleB database [19].

The AR Face database consists of over 4000 images: 26
images per person for 126 different people. The images fea-
ture frontal view faces with different facial expressions, illu-
mination conditions, and occlusions (sun-glasses and scarf).
Following the standard evaluation procedure, we use a subset
of the database consisting of 2600 images from 50 male sub-
jects and 50 female subjects. Randomly selected 20 images
per person constitute the training set, and the rest are used
for testing. Each image is represented by a 540-dimensional
feature vector using the procedure described in [9].

The Extended YaleB database contains 2414 frontal-face
images of 38 individuals, captured under various illumination
conditions. We randomly selected half of the images (about
32 images per person) as the training set and the rest are used
for testing. Each image is represented by a 504-dimensional
feature vector.

We compare the proposed algorithm to the two variants
proposed in [9]: LC-KSVD1, which refers to (2) for β = 0,
and LC-KSVD2, which refers to (2) for α, β 6= 0. Two vari-
ants of our method are evaluated: SupGraphDL, standing
for Algorithm 1 without learning the graph Laplacians LG
and LM, and SupGraphDL-L, in which the two Laplacians
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are adapted throughout the process. The obtained results are
summarized in Table 1. Note that we used a random parti-
tion of the data into training and testing sets, therefore the re-
sults obtained for LC-KSVD represent average performance
and are different from the best case results presented in [9].
Nevertheless, when the incorporated graph is not arbitrarily
constructed but optimized to properly convey the local data
structure, our algorithm (SupGraphDL-L) achieves a higher
classification accuracy for both evaluated datasets.

Method AR YaleB
LC-KSVD1 84.17 93.12
LC-KSVD2 85.00 93.29

SupGraphDL 84.93 92.89
SupGraphDL-L 85.33 93.44

Table 1: Classification accuracy (%) for the AR Face dataset
and the Extended YaleB dataset.

3.2. Multi-Label Classification

Next, we evaluate the proposed algorithm for the more chal-
lenging task of multi-label classification. In this setting, each
instance may be associated with multiple classes simultane-
ously. Thus, exploiting the interdependency between labels
can significantly affect the success of the classification algo-
rithm.

As an initial step, we extended our method to support
multi-label classification, by altering the binary label matrix
H to allow multiple non-zeros per column. The classification
procedure was also extended to support multiple labels: in-
stead of choosing the class yielding the maximal score, the
relevant labels were selected as those reaching a result above
a threshold, i.e. Ωi = {` : [Wxi](`) ≥ 0.5}, where xi is the
sparse representation of a test sample yi over the dictionary
D, and W is the learned classifier.

Furthermore, the previous results indicate that the graph
constructions significantly impact the performance. For
the multi-label classification settings, we propose a bilat-
eral proximity metric for LM consisting of both signal
values and label data. That is, we multiply wij in (4) by

exp
(
−dh(hi,hj)2

εh

)
where hi, hj are the label vectors corre-

sponding to yi, yj and dh(·, ·) denotes the Hamming distance.

The algorithm was evaluated for two datasets: natural
scene images and yeast gene functionality.

The natural scene dataset consists of 2000 natural scene
images, each belonging to one or more out of 5 possible se-
mantic classes: desert, mountains, sea, sunset and trees. Half
of the images were used for training and the rest constitute
the test set. Each image is represented by a 294-dimensional
feature vector using the procedure described in [20]. The ex-
tracted features are spatial color moments in the LUV space,

which are commonly used in the scene classification litera-
ture.

The yeast dataset [21] is formed by micro-array expres-
sion data and phylogenetic profiles, and includes 2417 genes,
1500 of which are used for training and the rest constitute the
test set. Each gene is represented by a 103-dimensional fea-
ture vector, and associated with a set of functional groups out
of 14 possible classes (such as metabolism, transcription and
protein synthesis).

Similarly to the single-label classification experiment, we
compare two variants of our method (with and without adapt-
ing the graphs) to LC-KSVD1 and LC-KSVD2 from [9].

To assess the accuracy of the algorithms in the multi-label
experiments, we use the average precision measure as defined
in [20]. The classification results summarized in Table 2, indi-
cate that our algorithm clearly outperforms the other methods.

Scene Yeast
LC-KSVD1 81.48 61.17
LC-KSVD2 82.57 61.21

SupGraphDL 82.78 64.69
SupGraphDL-L 83.80 67.91

Table 2: Classification accuracy (%) for the multi-label Scene
and Yeast datasets.

In the multi-modal scenario, the potential overlap between
different combinations of classes implies that a more com-
plex underlying structure could be learned and exploited. As
expected, the impact of the structural constraints in the multi-
modal scenario is very significant, and more pronounced
compared with the single-label examples. For the yeast
dataset, which is known to be difficult, the achieved im-
provement in classification accuracy is almost 7%. Moreover,
though increasing the computational complexity, it can be ob-
served that adapting the Laplacian matrices further improves
the classification results for both datasets.

4. CONCLUSIONS

In this paper, we extended our previously proposed dual graph
regularized DL algorithm to a supervised setting. In the new
algorithm, the dictionary atoms are encouraged to preserve
the feature similarities as detected in the training data and en-
capsulated by the graph Laplacian LG , thus leading to a better
representative and more robust dictionary. By adhering to the
intrinsic geometrical structure of the data manifold, as cap-
tured by the graph Laplacian LM, the resulting sparse codes
are more discriminative and can significantly enhance classi-
fication performance.

Experiments performed on different datasets demonstrate
that the proposed algorithm yields very good classification re-
sults, outperforming other supervised DL algorithms for both
single-label and multi-label classification tasks.
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