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ABSTRACT

A resource effective extension to the class of distributed real-time
diffusion Kalman filters is proposed. The proposed scheme removes
the need to share measurement variables explicitly, by sharing only
the state estimates and state error covariance matrices which implic-
itly contain the information about the measurements, observations
matrices, and noise covariance matrices. The proposed distributed
Kalman filter is quiet general, and its performance is comparable to
that of existing diffusion based schemes, while having lower com-
munication and computational requirements per-iteration compared
to current distributed Kalman filtering algorithms.

Index Terms— Kalman filter, distributed estimation, diffusion
strategy, distributed adaptive filtering, sensor networks.

1. INTRODUCTION

The widespread emergence of intelligent sensor networks for appli-
cations ranging from robotics to environmental monitoring has been
enabled by the availability of inexpensive sensors equipped with
communications and computational capabilities. The task of devel-
oping fast and robust signal processing algorithms for these sensor
networks has therefore been a subject of great interest in the signal
processing, control, and machine learning communities [1, 2, 3, 4].
An example of an algorithm that has been studied extensively in the
context of multi-agent networks is the distributed Kalman filter. This
is attributed to the optimality of the (single-agent) Kalman filter for
linear Gaussian systems and the flexibility of the state-space repre-
sentation to model a large class of real-world problems.

Early work in the field of distributed Kalman filtering focused
on decentralizing the Kalman filtering operations using individual
agents which communicate with a fusion center [5]. This method
is referred to as the centralized Kalman filter, due to the fact that a
central fusion center has access to all the information in the network.
Since communicating to a single fusion center makes the network
vulnerable to even a single point of failure, decentralized solutions,
such as distributed Kalman filters where each node is required to
share all its information with every other node in the network, were
introduced [6, 7]. This method effectively replicates the operation of
the centralized Kalman filter at each node, this severely burdens the
network with communication traffic overhead and large number of
computations [6].

More general distributed Kalman filters were proposed in the
consensus literature, where the constraint that the nodes had to com-
municate with every other node in the network was relaxed [8, 9]. To
compensate for the fact that nodes can only access the measurements
in their neighborhood, consensus Kalman filters include a consensus
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step for their state estimates whereby the individual nodes exchange
and average their intermediate state estimates with their neighbors
several times before the next measurement is obtained [10]. In other
words, consensus filters operate at two time-scales, a longer time-
scale for the measurement updates and a shorter time-scale for the
consensus update.

The class of distributed Kalman filtering algorithms proposed
in [11] are based on diffusion adaptive algorithms [12, 13], that en-
able both the measurement update and information fusion through-
out the network to be applied in a single time-scale, and have become
known as diffusion Kalman filters. Furthermore, it was shown that
diffusion strategies outperform their consensus based counterparts
as they provide for a more comprehensive diffusion of data in the
network [14].

A fundamental feature in the diffusion strategy is that only the
state estimates, together with observation variables, are shared in the
network. However, results in fusion theory show that optimal fusion
of estimated variables require the sharing of both the state estimates
and their covariance matrices [15]. To this end, fusion theory has
been applied in conjunction with the diffusion strategy to introduce
a distributed Kalman filtering scheme based on covariance intersec-
tion [16, 17]. Consequently, the communication requirements for
distributed Kalman filters based on covariance intersection are more
than that of standard distributed Kalman filters as the state covari-
ance matrix needs to be communicated together with the observation
variables and estimates of the state vector.

In this work, we propose an extension of the diffusion Kalman
filter where we draw upon the ideas from covariance intersection
without imposing excessive communication or computational bur-
den on the network. Specifically, the proposed distributed Kalman
filter mitigates the need to share observation variables while only re-
quiring the sharing of the intermediate state estimates and state error
covariance matrices. This is achieved by diffusing not only the state
vector but also the state covariance matrix through the network. The
motivation for this distributed Kalman filter comes from our earlier
work in [18] where we conjectured that the diffusion step implicitly
shares the measurements in the network and a separate step to incor-
porate the measurements in the neighborhood may be redundant.
Mathematical notations: Scalars, column vectors, and matrices are
denoted by lowercase, bold lowercase, and bold uppercase letters
respectively. The transpose operator is denoted by ()T whereas the
statistical expectation operator is denoted by E {-}. Finally, the real
domain is denoted by R.

2. PROBLEM FORMULATION

Consider a general network that is represented by an undirected
graph G = (N, £), with the node set V" = {1,2,..., N}, where N
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is the number of nodes in the network and the edge set £ denotes the
connections between the nodes in the network. The neighborhood
of a node 4, denoted by N;, is defined as all the nodes connected to
node 4 including itself. The cardinality of the set N; is defined as
the number of connections node 7 has with its neighbors including
itself and is denoted by |[N;| = N,. At each time instant, k, node
i is tasked to estimate a state vector x; € R™ which is assumed
to be identical throughout the network but observed locally through
measurements y; , € R”. The measurements and state are coupled
via a state-space model given by

Arxr_1 + vy
H;wxp + wik

oz (1)

Yik =
where Ap € RM*M i the state transition matrix and H;, €
RE*M s the observation matrix, whereas the process noise v, €
R and observation noise w; ; € R” are temporally uncorrelated
and spatially independent zero-mean white Gaussian noise processes
with a joint covariance matrix given by !

14 Cu. 0
E { [wfk:| [V;IL— wz—,n]} = [ Oh Cink(Si’e:| Ok (2)

where Jj,,,, denotes the Kronecker delta function, that is

1,
6k,n - {O7

The optimal solution to this problem comes in the form of the
centralized Kalman filter implemented at each node [22], the op-
erations of which are summarized in Algorithm 1, where & ;1
and @y, denote respectively the a priori and a posteriori esti-
mates of x.

k =n,
otherwise.

Algorithm 1. Centralized Kalman Filter [22]
Initialize with:

i'0|0 = E{afo}
Moo = E{(wo—E{wo})(zo—E{z0o})"}
Model update:
Tpik—1 = ArTp_1jp—1 3)
Myjp—1 = AiMy_ip_1Af + Cy,
Measurement update:
N
Sk =Y Hi:Cq, Hex (4a)
=1
N
ar=> H]CL Yok (4b)
=1
M;\}c :M;\}c—l + Sk (40)
Epoik =Zpj—1 + Mk (qe — Sk®rjr—1) (4d)

Although the centralized Kalman filter presents the optimal so-
lution, the calculations of S; and gy in (4a) and (4b) require all

! Although the concepts are introduced in a real-valued framework, for
generality and notational simplicity, these concepts can be readily applied
for complex/quaternion-valued signals using widely-linear models [19]. The
reader is referred to [20, 18, 21] for more information on diffusion Kalman
filtering strategies for general complex/quaternion-valued signals.

nodes to share the parameters H} kCZ,Zl’k Hg x and HZ kC;; LYk
Taking into account that in sensor networks, communication is re-
stricted to a local neighborhood of a node, the implementation of
centralized Kalman filters imposes a severe communication burden
and is therefore not suitable for real-time applications. In the context
of the diffusion Kalman filter [11], local approximations of Sy and
g, from (4a) and (4b) given by

Sik = Z H;Co, Hek & qix = Z H;.Co, yek (5
LeN; LeEN;

are used to obtain intermediate estimates of the state vector as
Yik = Ar®ik1jb—1 + M ki @ik — Sik®igp—1) (6)
—— —

Ty klk—1

where M:;‘k = (AM s o1 AL + C,,,C)71 + S, x, whereas

Z; k|k—1 and &; |, denote the a priori and a posteriori estimates of
the state vector at node 7 at time instant k, with

Tipe = Y @iothek ™

LeEN;

while a;, denotes the diffusion coefficients which must satisfy
> ten;, @i = 1, and are chosen by the algorithm designer [13].

3. PROPOSED DISTRIBUTED KALMAN FILTER

From (6), notice that the information regarding measurements, ob-
servation matrices, and observation covariance matrices from the
neighborhood of node ¢ is implicitly embedded within the interme-
diate state estimates 1p; ;. Therefore, as long as appropriate values
of a; ¢ are chosen, it is possible to simultaneously accomplish the in-
formation sharing steps in (5) and diffusion step in (7) using a single
diffusion step.

Considering the operations of the centralized Kalman filter, upon
replacing (4a) and (4b) into (4d), we have

N

. . T -l
Tk = Trj—1 + Mg E H,,C., , Yek
=1
N

} : T -1 -
_Mk\k H,_;kakaHg,kwk‘k_l
=1

which after some mathematical manipulations, gives
N
~ A~ T —1 ~
Tk = Tpjh—1 + ZMk\kHl,kaM (yer — Hep@ppi1) -

=1

(®)
The a posteriori estimate of the state vector given in (8) can be al-
ternatively calculated by the summation

| &
Trik = (Z:ZI'l/Je,k )

where the intermediate state estimate, ) 1, is given by

Yo = fka\k_1+NMk\ng,kC;2k (yer — Hog@ppp—1) - (10)
In addition, replacing (4a) into (4c) yields the diffusion step for the

state error covariance matrix in the form of

N N
- _ - 1
My =My Y HICLl H = Y Tee (D
=1

=1
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where each node updates its intermediate state error covariance ma-
trix using

Lok =Mk‘k L+ NH{,Co,  Heg. (12)

Wik

Now, the assumption is made that the network is connected, that
is there exists a path between any two nodes in the network, which
allows My, in the formulation given in (11) and @, in the formu-
lation given in (9) to be calculated through the diffusion of matrices
I’y i as given in (12) and local estimates ), as given in (10). The
operations of such a diffusion Kalman filter are summarized in Al-
gorithm 2.

Algorithm 2. Cost-Effective Diffusion Kalman Filter with Implicit
Measurement Updates

Fornodesi={1,...,N}:

Initialize with:

Ci%‘,o\o = E {1‘0}
M; o0 = E{(“’O —E{z0})(zo _E{$0})T}
Model update:

L k|k—1 — Akflﬁi,k—uk—l
.
M k-1 = AxM; i1 je—1A + Cuy,

Measurement update:
Fut =M+ ML

M; klk N Z Lok
LeEN;
T 1
Gix = NiM, i H; , Co;
Y = iﬁi dlh—1 + Gk (Yik — Hi k@i gi—1)

N Zdiek

LeEN;

—1
w,;ﬁkHi,k:

Liklk =

State error covariance matrix diffusion. Sharing the intermediate
state error covariance matrices I'y 1, as opposed to the update terms
H; kCW . He,x in conventional diffusion Kalman filters, enables
every node to have access (implicitly) not only to the information
from its neighbors but also to that of their neighboring nodes.

4. PERFORMANCE ANALYSIS

The difference between the true state vector and the local estimate at
node ¢ at a time instant £ is given by €; x = T — 1; %, which can
be expressed as

Hi k@i po-1). (13)

€ik =Tk — T ph—1 — Gik (Yir —

Uponreplacing y; . = H; pxi+w; , and €iklk—1 = :ckf:&i,k‘k,l
into (13), we have

€ =T—GirtHir)€ pip—1 — GixWik. (14)

Furthermore, substituting €; j|r—1 = Ak€; x_1|k—1 + Vk, obtained
from the true state evolution in (1) into (14), gives

€ir=0—GirHir) Ar€p_1jk—1

15
+ (I—-GirHir)vi — Gi pwi k. 13

Consider also the difference between the true state vector and its
estimate obtained at node ¢, given by

€iklk = Th — Tiklk = Th — 1o Z Yo = Z €. (16)

ee/\/’ Y reN;

Now, replacing the intermediate state error evolution in (15) into the
diffusion step in (16), gives a recursive expression for the state vector
estimation error in the form

1
€iklk =7 Z (I—-GeeHer) Arer—1jk-1 (17)
* LEN;
+iZ(IfG H.)v fiZG w
N, exber) v = < 0,kWE, k-
LeN; LeEN;

From Algorithm 2, we can now substitute the gain values in (17) as

GowHew = NeMy o Hy ,Co) Heo = My Yok

“wok

where Y 1, = NZHZ +Col Hy 1, so that (17) becomes

Wk
€ |k _N Z (T =M Yor) Ar€rp—1jp-1 (18)
LeN;
1
t N Z (I_M£k|k‘rék)l/k_7 Z G kwe, k-
b renN; L een;

Mean performance. Taking the statistical expectation of (18) and
noting that v, and wy,,, are zero-mean results in

1

E {ei,k|k} = N Z (I - Mz,k|kTé,k) ALE {Gz,k—l\k—1} .
b LeEN;

19)

Therefore, given that all the nodes in the network are initialized with

2,010 = E {x0}, the expression in (19) indicates that the algorithm

operates in an unbiased fashion.

Mean square performance. Given the recursion for the state error
vector in (18), the state error covariance matrix at node ¢ can be
expressed as

T
ik =E {57; k|k€i, k|k}

N2 2. 2 E{C’”C"’“}

Y meN; neN;

N2 2. 2 E{E’" ’“é"’“}

Y meN; neN;

N2 2. 2 E{X’"’“X"’“}

v meN; neN;

(20)

where
Cmk = (T — My o5k X k) Ak€mp—1k-1
Empk = (I = My g Lo k) Vi
Xm,k :Gm,kwm,k-

Now, we shall make the following standard assumptions, typi-
cally applied in Kalman filtering analysis [23]:
e The state evolution function and observation functions for all
nodes in the network are time invariant, that is

lim Ay =A & WeN: lim H,,=H,
k—oo k—o0
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e The state evolution and observation noises are stationary

lim C,, =C, & VW eN: lim C,,, =C.,
k— o0 k— o0 ’

e The matrix pairs V¢ € N : {Ay,Hg} are observable and
1
the matrix pair { A, C2 } is controllable.
Then, it follows that for all nodes in the network, Y x and My 1
become time invariant. In addition, from Algorithm 2, a time invari-

ant M |, results in the matrix Gy, also becoming time invariant,
which can be summarized as

IfVl e N : lim Mg’k‘k =M;=VlEN: lim G =Gy
k— o0 k—oco

and therefore 33; ;. converges.

Communication requirements. The communication requirements
of different distributed Kalman filtering algorithms are compared in
Table 1. Observe that the algorithm developed in this work has the
lowest communication requirements, achieved by only sharing the
intermediate states 1 j and state error covariance matrix I'y 5.

Table 1: Communicated variables for different distributed Kalman
filtering strategies.

Strategy Communicated Variables
Local [7, 11] Her, yok, Co,,

Diffusion [11]
Consensus [8]

Hor, yer, C;Jyk, Yok
Hor, yer, C;elyk, Yok
Hyr, Co, ., Yok
Yor, Lok

Previous work [18]
Current work

5. PERFORMANCE VERIFICATION

In order to demonstrate the performance of the proposed algo-
rithm, we considered a target tracking application in a network
of 20 nodes with the topology shown in Fig. 1. The state vector,
Xk = [Tk, Yk, Tk, Yx] ', consists of the positions, x, yx, and veloc-
ities, T, Yr, in the horizontal and vertical positions, respectively.

Fig. 1: The network of 20 nodes used in simulations.

The state is assumed to experience an unknown acceleration

which is modeled as the process noise vy = [Tk, y‘k]T. The state-
space equations for this problem then become
1 0 AT 0 2(AT)? 0
01 0 AT 0 L(AT)?
Te=1o 0 1 o |TrT] AT 0o | M
0 0 O 1 0 AT
1 0 0 O
Yik = 010 0 T + Wik

where only the positions xj, yi are observed at each node ¢. The
sampling interval was chosen to be AT = 1/25s. Fig. 2 shows
that the proposed Kalman filter in Algorithm 2 was able to track the
moving object and that the nodes in the network were able to reach
a consensus within 2.

Next, the performance of the proposed algorithm was bench-
marked against existing distributed Kalman filtering algorithms:
“Local” Kalman filter (eq. (13) in [11]), “Diffusion” strategy (Al-
gorithm 2 in [11]), and the “Consensus” Kalman filter algorithm
(Algorithm 3 in [8]). The performance of the centralised scheme
[22], which requires all the nodes to communicate their measure-
ments to a fusion center is included for completeness. Fig. 3 shows
the steady-state mean square deviation (MSD) at each node i, de-
fined as

1 2500
MSD; = —— — @l
1500 > ek — &

k=1000

Observe that the proposed algorithm outperforms both the con-
sensus and local schemes and achieves a steady-state mean square
deviation (MSD) close to that of the diffusion Kalman filter, while
having the lowest communication requirements (see Table 1).

w

---True Position
PEstimates

A

X-Position

1 --- True Position
[ Estimates

0 1 2 3 4

Fig. 2: Tracking performance of the proposed Kalman filter across
all the nodes. Estimates of the target position across all 20 nodes lie
within the region in red.

-18 RE 20 ARMEE L L SN A
Fo e e o ke = ke ke ke e o e e A ke e ke ke ke ok ok
_19“1 é é 4‘1 é é ‘7 é é 1‘01‘1 1‘21‘31‘41‘51‘61‘71‘81‘92‘0
Node
Fig. 3: MSD of the state estimates across all 20 nodes.

6. CONCLUSION

A novel distributed diffusion Kalman filtering algorithm has been de-
veloped in order to mitigate the need to share observation variables.
The proposed algorithm only requires the diffusion of an intermedi-
ate state estimate and estimates of the state error covariance matrix.
In this setting, the least amount of communication traffic is required
over the network, while maintaining a performance comparable to
that of the state of the art distributed Kalman filtering algorithms.
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