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ABSTRACT

This paper proposes a probabilistic intent inference approach
that is significantly more computationally efficient than other
existing bridging-distributions-based predictors. It sequen-
tially determines the probabilities of all possible destinations
of a tracked object, whose motion is modelled by a Markov
chain with the distribution of its terminal state equal to that of
a nominal endpoint. This encapsulates the long term depend-
encies in the object trajectory as dictated by intent. Simula-
tions using real data show that the notable reductions in com-
putations achieved by the introduced bridging-based predictor
does not impact the quality of the overall inference results.

Index Terms— Intent inference, Kalman filter, bridging
distributions, human computer interactions.

1. INTRODUCTION

In several application areas, such as human computer interac-
tion (HCI), surveillance and robotics, knowing the destination
of a tracked object (e.g. a pointing apparatus or vessel) can
offer crucial information on intent, potential conflict or op-
portunities, thereby, enabling smart predictive system func-
tionalities and automation. For example, unveiling the icon
the user intends to select on an in-vehicle touchscreen, early
in the free hand pointing gesture, can effectively simplify and
expedite accomplishing the selection task. Hence, it can sub-
stantially reduce the effort (distractions) associated with in-
teracting with an in-car display [1, 2]. In maritime surveil-
lance, determining the destination of a vessel, which drives
its motion (including the vessel future trajectory), in a given
geographical area permits the timely identification of possible
threats or favorable circumstances [3, 4, 5]. It is noted that a
wide range of other applications can benefit from knowing
the intent of an object of interest, for instance intelligent ro-
bot navigation in the presence of other moving agents [6, 7]
such as pedestrians, and advanced driver assistance systems
[8], to name a few.

In this paper, we propose an efficient solution to the prob-
lem of predicting the intended destination of a tracked object
from a finite set of N nominal endpoints, given its available
observed partial trajectory. The introduced technique, which
is based on the bridging distributions framework, is shown to
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be significantly more computationally efficient than the pre-
dictors in [9, 10]. The adopted bridging formulation capit-
alises on the premise that the track of the object or target,
albeit random, must end at the intended destination, which is
assumed be unknown. A bridge for each possible endpoint
is constructed to capture the long term dependencies in the
object trajectory due to premeditated actions guided by the
intent. Whilst several well-established conventional sensor-
level tracking algorithms [11, 12, 13] focus on inferring the
posterior of the latent state xt (e.g. the tracked object posi-
tion, velocity, acceleration, etc.) at the current time t given
the available noisy observations y1:t, the objective here is to
estimate at t the likelihood of each of the possible destinations
being the endpoint , i.e. p(D|y1:t). In this paper, the inference
routine implementation entails running one Kalman filter to
attain p(D|y1:t), in lieu of N such filers as in [9, 10].

Utilising predictive information on the target endpoint
to improve the accuracy of the state estimation results, i.e.
destination-aware tracker, was proposed in [3, 14], assuming
known time of arrival T at destination. New destination-
aware tracking approaches that use a discrete stochastic re-
ciprocal or context-free grammar process and incorporate an
additional mechanism to determine the intended endpoint
are introduced in [15, 16, 17]; the state space is discretised
within predefined regions. Whilst discretisation can be a
burdensome task in certain scenarios (e.g. tracking in 3D
or in large geographical areas), the target can consequently
pass through only a finite number of those grids/zones. In
this paper, the objective is to estimate p(D|y1:t) without a
priori known T and continuous state space models are ap-
plied, thus, no restrictions on the target path to its destination
are imposed. Within this formulation, noisy asynchronous
observations can be easily handled and a Kalman-filter-type
implementation of the inference routine is utilised. It is a
simple effective solution to the intent prediction problem.

Various prediction techniques that rely on a dynamical
model learnt from previously recorded tracks (complete data
sets) exist, e.g. [8, 6]. Whilst such methods typically require
a substantial parameters training and have high computational
cost, here a state-space modelling approach is applied. It uses
known dynamical and sensor models, with a few unknown
parameters, as is common in the tracking area [11, 12, 13].
The solution below requires minimal training and is computa-
tionally efficient, yet delivers a competitive performance sim-
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ilar/identical to the bridging-based algorithms in [9, 10]. For
further information on the related work, e.g. in the HCI or
anomaly detection areas, the reader is referred to [10].

2. PROBLEM STATEMENT

Consider a random state xt ∈ Rs at time t with the initial
prior distribution π(x1). A random time in the future de-
noted by T has the a priori distribution π(T ); T is the time
instant when xt reaches its terminal state (e.g. a tracked ob-
ject reaches its destination). The predicted terminal state at
time T is then given by xT . The objective here is to establish
(within a probabilistic framework) which of the finite pos-
sible destinations will be assumed by this random state. Let
D ∈ D = {1, · · · , N} be a categorical random variable de-
noting the labels of N possible terminal state distributions,
also known as destinations. These terminal state distributions
are notated by π(xT |D). In the adopted Bayesian formula-
tion, the prior distribution π(D) is assigned to the destinations
and the sought posterior p(D|y1:t) is computed using

p(D|y1:t) =
π(D)p(y1:t|D)

p(y1:t)
, (1)

where y1:t is the available observations up to time t. From
(1), the intended destination can be determined based on a
decision criterion, e.g. the intuitive Maximum a Posteriori
(MAP) estimate where the most probable destination at t is
the intended one [9, 10]. The noisy observation of the state
variable xt at t are available via the linear and Gaussian model

g(yt|xt) = N (yt;Cxt, R). (2)

Additionally, the evolution of the state variable, which can be
continuous, is described by dxt = Γxtdt+Σdωt such that ωt
is a standard n-dimensional Wiener process. The continuous-
time state evolution can be integrated and discretised to ob-
tain a discrete-time linear and Gaussian state evolution model
between two arbitrary times t and τ as in

xt = Ftτxτ + wtτ (3)

where the noise wtτ is zero mean and its covariance is Qtτ .
The class in (3) includes many models used widely in track-
ing applications, for example the (near) constant velocity or
acceleration models [13]. The state evolution model (3) is
denoted by f(xt|xτ ) in the rest of this paper. This state evol-
ution model does not depend on the destination D. However,
when the conditional probability distribution of xT is avail-
able a priori or is assumed to be π(xT |D), bridging distri-
butions can be utilised. Bridging distributions are used in a
Bayesian setting to incorporate the prior knowledge about the
conditional terminal state into the state evolution model in
[9, 10]. The bridging state evolution model between two time
instances is then expressed by

p(xt|xτ , xT , D, T ) ∝ p(xt|xτ , D, T )p(xT |xt, D, T ). (4)

It is noted that the tackled intent prediction problem entails es-
timating the posterior p(D|y1:t), and the latent state variables
are not sought. In fact, in order to compute the likelihood
p(y1:t|D), these latent variables should be integrated out as in

p(y1:t|D) =

∫
p(x1:t, xT , y1:t|D,T )π( T |D)dTdx1:tdxT .

In the next section, we show that the likelihood p(y1:t|D) in
(1) can be calculated via a Kalman-filtering-type inference.

3. PROPOSED LOW COMPLEXITY SOLUTION

In [9, 10], the state is augmented by the terminal state vari-
ables. A Kalman filter on the new state variable with dimen-
sion 2s is subsequently applied for each of the N possible
destinations. Since the state is augmented by xT and the state
evolution is now conditioned on the categorical variable D,
then N Kalman filters should run at the same time in an on-
line application to compute the likelihood p(y1:t|D,T ). Fur-
thermore, in order to integrate out the scalar random variable
T , which may have a non-conjugate distribution, numerical
methods are applied. When these numerical techniques are
used, the N Kalman filters should be run for each point of
the deterministic or stochastic grid point on the support of
π(T |D). If M points are utilised, then the computational
complexity of the bridging-based intent prediction in [9, 10]
is of orderO(4NMs2). In this paper, we propose an efficient
algorithm targeting p(y1:t|D), which employs a single filter,
and exploits a sound approximation to achieve significantly
lower computational cost of the intent inference routine; it is
of order less than O(NMs2), see Table 1. The introduced
method here can also be used to compute the smoothing pos-
terior of the initial state. For example, in the HCI application
of pointing at a touchscreen, the posterior of the initial state
can be utilised to infer the posterior distribution on the time
of arrivals T using a probabilistic version of Fitt’s law [18].

Assuming a known prior π(D) in (1), next we aim to es-
timate the likelihood p(y1:t|D) for the state-space model1 ,

x1 ∼ π(x1), (5a)
xk|xj ∼ f(xk|xj), for k 6= T (5b)

xk|xj , T ∼ f(xT |xj , T ), for k = T (5c)
yk|xk ∼ g(yk|xk), (5d)
xT |D ∼ π(xT |D), (5e)
T |D ∼ π(T |D). (5f)

The following equality holds for the proposed bridging state

1In order to have a consistent model, the prior distribution on the ter-
minal state in (5e) should be consistent with the motion model (5b) and the
prior on the initial state in (5a) because

∫
π(xT |D)p(D)dD = π(xT ) =∫

π(x1)f(xT |x1)dx1. However, in this work π(xT |D) is assumed to be
closely approximated by a normal distribution.
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evolution model in (4)

p(xt|xt−1, xT , T ) =
p(xt, xT |xt−1, T )

p(xT |xt−1, T )
(6a)

=
p(xt|xt−1)p(xT |xt, xt−1, T )

p(xT |xt−1, T )
(6b)

=f(xt|xt−1)
f(xT |xt, T )

f(xT |xt−1, T )
, (6c)

where the Markov property of the process is used in the
last equality. Thus, the bridging evolution model can be
expressed by two factors; the first factor is the state model
without bridging and the second factor is the rational func-
tion f(xT |xt,T )

f(xT |xt−1,T ) , which has a sequential nature. Below,
this sequential characteristic will be exploited to reduce the
computational complexity of the algorithm targeting the like-
lihood p(y1:t|D). Using the conditional prior π(x1, xT |D) ,
π(x1)π(xT |D), the conditional likelihood p(y1:t|D,T ) can
be expressed by

p(y1:t|D,T ) =

∫
p(x1:t, xT , y1:t|D,T )dx1 · · · dxtdxT

=

∫
π(xT , x1|D)

t∏
k=2

p(xk|xk−1, xT , T )

×
t∏

k=1

g(yk|xk)dx1 · · · dxtdxT . (7)

Utilising the sequential property of the second factor in (6c),
the predictive likelihood simplifies to

p(y1:t|D,T ) =

∫
π(xT , x1|D)

f(xT |xt, T )

f(xT |x1, T )

t∏
k=2

f(xk|xk−1)

×
t∏

k=1

g(yk|xk)dx1 · · · dxtdxT . (8)

Consider the joint smoothing density of a state space model
with initial prior, dynamical model and likelihood function
according to (5a), (5b) and (5d), respectively, as per

q(x1:t, y1:t) =π(x1)

t∏
k=2

f(xk|xk−1)

t∏
k=1

g(yk|xk) (9)

=q(x1:t|y1:t)q(y1:t) (10)

where q(y1:t) is equal to the predictive likelihood of a Kal-
man filter with initial prior, dynamical model and likelihood
function according to (5a), (5b) and (5d), respectively. Fur-
thermore, q(x1:t|y1:t) is the joint smoothing posterior of the
state. Hence, the conditional likelihood can be written as

p(y1:t|D,T ) =

∫
π(xT |D)

f(xT |xt, T )

f(xT |x1, T )
q(x1:t|y1:t)

× q(y1:t)dx1 · · · dxtdxT . (11)

Now by marginalizing x2 to xt in (11), we obtain

p(y1:t|T,D) =q(y1:t)

∫
π(xT |D)

q(xT , x1|T )

f(xT |x1, T )
dx1dxT ,

(12)

where

q(x1, xT |T ) ,
∫
f(xT |xt, T )q(x1:t|y1:t)dx2 · · · dxt (13)

Let q(x1, xt) = N
(

[ x1
xt

] ;
[ x1|t
xt|t

]
,
[
P1|t P1,t|t
Pt,1|t Pt|t

])
, then for

f(xT |xt, T ) = N (xT ;FTtxt, QTt), we have

q(x1, xT |T )

= N
(

[ x1
xT

] ;
[

x1|t
FTtxt|t

]
,
[

P1|t P1,t|tF
′
Tt

FTtPt,1|t FTtPt|tF
′
Tt+QT,t

])
.

(14)

It is noted that q(xT |T ) is readily available from propaga-
tion of the filtering posterior of xt using the dynamical
model f(xT |xt, T ) without smoothing, while computing
the smoothing posterior for x1 as well as the conditional
density q(xT |x1, T ) requires a fixed point smoother [19]. We
apply the parametrizations π(xT |D) = N (xT ;µD,ΣD) and
f(xT |x1, T ) = N (xT , FT1x1, QT1) for the conditional ter-
minal state distribution and the state evolution model from the
initial time to time T , respectively. After some measurement
updates and when the expected time delay to the destina-
tion is large, QT1 becomes much larger than the covariances
of the distributions in the numerator of (12). Thus, when
QT1 � QTt and QT1 � ΣD, the normal distribution in the
denominator can be approximated by a uniform distribution
and, consequently, replaced by a constant factor α which
later on will be cancelled via normalization of the posterior
p(D|y1:t). This well motivated approximation leads to

p(y1:t|T,D) ≈ αq(y1:t)
∫
π(xT |D)q(xT , x1|T )dx1dxT

=αq(y1:t)

∫
π(xT |D)q(xT )dxT (15a)

=αq(y1:t)N (µD;FTtxt|t, FTtPt|tF
′
Tt +QT,t + ΣD)

(15b)

where the following Gaussian identity is used,

N (z;µ1,Σ1)N (z;µ2,Σ2)

= N (z;µ,Σ)N (µ1;µ2,Σ1 + Σ2) (16)

such that µ = Σ(Σ−11 µ1+Σ−12 µ2) and Σ =
(
Σ−11 + Σ−12

)−1
.

The Likelihood can be computed via the marginalization

p(y1:t|D) =

∫
p(y1:t|D,T )π(T |D)dT. (17)

The above integral can be computed numerically, for example
by a Monte Carlo (MC) method as well as a numerical quad-
rature technique [9, 10]. These approaches are particularly
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Table 1. Efficient likelihood computation for bridging predictors.

1: Inputs: µd, Σd for d = 1, ..., N , C, R, x1|0, P1|0, y1:t and
T1, ..., TM .

2: η ← 1
3: for k=1 to t do . for each observation yk
4: if k >1 then
5: Compute Fk(k−1) and Qk(k−1)

6: xk|k−1 ← Fk(k−1)xk−1|k−1 . filtering time update
7: Pk|k−1 ← Fk(k−1)Pk−1|k−1F

′
k(k−1) +Qk(k−1)

8: end if
9: Sk ← CPk|k−1C

′+R, . measurement update
10: K ← Pk|k−1C

′S−1
k

11: ỹk ← Cxk|k−1, xk|k ← xk|k−1 +K(yk − ỹk)
12: Pk|k ← (I −K)Pk|k−1

13: η ← η ×N (yk; ỹk, Sk)
14: for T = T1 to TM do
15: Compute FTk and QTk

16: for d=1 to N do
17: m(T, d)← N (µd;FTkxk|k, FTkPk|kF

′
Tk +QTk + Σd)

18: end for
19: end for
20: for d=1 to N do
21: ld,k ← η ×

∑
m(T1 : TM , d)

22: end for
23: end for
24: Outputs: ld,k, xk|k and Pk|k for k = 1 · · · t

attractive since π(T |D) can have a non-conjugated distribu-
tion to the normal distributions where T appears. The pseudo-
code of the proposed algorithm is listed in Table 1 assuming
a uniform prior π(T |D) for simplicity; the approximate like-
lihood based on (12) is denoted by ld,k for d = 1, ...N and
k = 1, .., t.

4. SIMULATION RESULTS

Here, we compare the destination prediction performance of
the proposed computationally efficient bridging distributions
(CE-BD) with the original bridging formulation in [9, 10],
i.e. BD. Fifty full trajectories of free hand pointing gestures
collected in an instrumented car are examined. They per-
tain to four users acquiring (i.e. pointing and selecting) GUI
icons (N = 21) on a touchscreen mounted to the car dash-
board. Observation yt at time t is the 3D cartesian coordin-
ates of the pointing finger, as provided by a gesture tracker.
Success is considered to be the ability of the MAP estimate
D̂(t) = arg maxd∈D p(D = d | y1:t) to correctly identify the
intended endpoint D+, i.e. classification success S(t) = 1
if D̂(t) = D+ and zero otherwise, for observations at t ∈
{t1, t2, ..., T}, uniform priors on T and D are assumed.

Simulation results from a bridged (near) constant velocity
(CV) model of the pointing movements in 3D, i.e. s = 6,
showed that the BD-CV and CE-BD-CV produced identical
intent prediction (classification) results compared to that in
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Fig. 1. The posterior distribution of destinations p(D|y1:t).

[9, 10] for all observations in the 50 pointing trajectories. This
demonstrates that the reductions in the computational cost of
the inference routine achieved by the proposed CE-BD does
not have any noticeable impact on the overall quality of the
results of predicting the on-screen destination of a pointing
task. It is noted that endpoint prediction using the bridged
CV model is superior to other benchmark competitors for the
same data set as reported in [9], hence it is assessed here. On
the other, Figure 1 depicts the posterior distribution of des-
tinations p(D|y1:t) in a selected pointing trajectory in 3D, for
an increasing number of observations over time for BD-CV
and CE-BD-CV. The top plot shows the posteriors obtained
via exact formulation of bridging while the bottom figure il-
lustrates the same posteriors using the proposed CE-BD. The
distributions at each time step marginally differ, specifically
when the probability of a given D is significant (meaningful)
at a given time instant t.

5. CONCLUSION

A computationally efficient Kalman-filtering-type imple-
mentation of the destination inference routine based on the
effective bridging distributions framework is introduced in
this paper. The substantial reductions in the computational
complexity of the predictor, which leverage an intuitive ap-
proximation in (16), are shown not to have noticeable negat-
ive impact on the quality of the overall endpoint prediction
results. Whilst destination prediction is relevant to several
application areas, this paper serves to motivate further work
on simple and efficient state-space-modelling-based intent
inference predictors.
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