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ABSTRACT

In this paper, single-target tracking using radar measurements is

addressed. Recently, algorithms based on Bernoulli random finite

sets have proved efficient in a cluttered environment. However, in

Bayesian approaches, the choice of the motion model impacts the

trajectory estimation accuracy. To select an appropriate set of mo-

tion models, a joint tracking and classification (JTC) algorithm can

be used. The principle is to consider different target classes depend-

ing on their maneuvrability, each of them being associated to a set

of motion models. In this context, additional information such as

a target length extent measurement can improve both classification

and trajectory estimation. Therefore, we propose a multiple-model

Bernoulli filter to perform JTC. To jointly estimate the trajectory and

the target length which is constant, a Rao-Blackwellized approach

is considered. Another contribution is that a bank of probabilistic

data association filters is run instead of Kalman filters to account for

false detections.

Index Terms— Bernoulli filter, joint target tracking and classi-

fication, Rao-Blackwellized particle filter, multiple-model approach,

random finite sets.

1. INTRODUCTION

In surveillance radar, point target measurements are generally com-

posed of the radar-to-target distance and the bearing angle. These

measurements are expected to arise from a target. When they come

from the environment, they are referred as false detections. Given

the set of available measurements, the goal is to on-line estimate the

trajectory of the mobile object. However, several issues have still to

be addressed. For instance, how to deal with false detections induced

by the clutter or how to anticipate the type of trajectories that could

be followed by the target?

On the one hand, algorithms based on a Bayesian formalism have

been derived around the finite-set statistics (FISST). They consist in

modelling both the false and true measurements as a single multi-

object. In this way, no explicit target-to-measurement association

is required when the trajectory is estimated. When dealing with a

single-target scenario, the Bernoulli filter has been shown to be rele-

vant in a cluttered environment [1].

On the other hand, estimation algorithms are based on a motion

model describing the target kinematic. However, for targets with

a high maneuvering capability, a single model is not enough to de-

scribe all the phases of the trajectory, leading to poor estimations. To

address this issue, multiple-model (MM) algorithms can be consid-

ered but should not combine more than two or three [2] models to

This work is part of the common research activities between Bordeaux
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avoid a loss of accuracy. For this reason, joint tracking and classifi-

cations (JTC) algorithms have been proposed. In JTC, the targets are

classified in different categories. For instance, target classes can be

linked to the target maneuvering capabilities, ranging from the large

targets such as a tanker, which are used to be non-maneuvering, to

the smallest ones such as a rubber boat or a fishing vessel, which

can be fastly accelerating. A class then indicates the most likely

motion models to be used. The classification can be deduced from

kinematic characteristics only [3, 4] or can use complementary in-

formation provided by electronic support measures (ESM) [5] for in-

stance. A JTC method based on heterogeneous sensors is presented

in [6]. Measurements of the target extent have also been of interest

in tracking [7, 8] and in particular in JTC approaches [9, 10, 11, 12].

In absence of clutter, we have proposed various ways to estimate the

target kinematic parameters in [13] for which the target length extent

has proved useful through a JTC approach.

In this paper, we propose a multiple-motion-model Bernoulli fil-

ter to perform JTC using the target length extent. It is based on

the random finite set (RFS) theory which provides a flexible frame-

work to represent both the target and the measurements [14]. As the

choice of the motion model is still of interest, we propose to derive

a multiple-model Bernoulli filter. By using the target extent as com-

plementary information in the algorithm, it simultaneously improves

the trajectory estimation and the target classification. The Bernoulli

filter can be implemented by particle filtering. Here, to improve state

space exploration, we have propagated the particles according to the

optimal proposal distribution. However, the particle filter is bound

to degenerate while estimating the target length which is a constant.

To overcome this problem, a Rao-Blackwellized approach is consid-

ered. As a consequence, only the trajectory is estimated by particle

filtering whereas conditionnally upon the particles, the target length

is estimated by a bank of probabilistic data association (PDA) filters.

The latter is used instead of the classical bank of Kalman filters to

directly take into account the false detections without re-introducing

any hard decision through an association algorithm.

Our paper is organized as follows: in section 2, we derive the

system model and the theoretical equations of the Bernoulli filter us-

ing both point target and target extent measurements. In section 3,

the algorithm has been tested on simulated data and we study the rel-

evance of the importance distribution and the use of the target length

information.

In the following, δx(y) is the Kronecker symbol which is equal to

1 if x = y and 0 otherwise. In addition, ∼ means is distributed

according to and N (x, µ,Σ) denotes the multivariate Gaussian dis-

tribution with mean µ and covariance matrix Σ. |X| is the cardinal

of X . xk1:k2 denotes the collection of x from the instant k1 to the

instant k2. diag(a1, ..., an) is the n × n diagonal matrix whose

diagonal elements are a1, ..., an.
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2. ALGORITHM PRESENTATION

2.1. RFS modelling

The goal is to estimate the target state by using the radar measure-

ments. In order to describe a single-target scenario with potential

false detections due to the clutter, two RFSs are considered: one for

the state representation and one for the measurements. In this paper,

the classical Bernoulli filter is extended to allow for multiple motion

models. C classes of targets are considered and each class can be

represented by a set of motion models. For a given class c, Mc
k de-

notes the number of candidate motion models. It should be noted

that the sequence of the models over time is a Markov chain and the

probability to switch from the ith model to the j th is denoted pij with
Mc

k
∑

j=1

pij = 1.

State model: this RFS is denotedXk for each instant k and describes

the target dynamics. Two configurations can be considered:

Xk =

{

{∅} when there is no target,

{xk} when the target is present,
(1)

with the state vector xk = [xk,
.
xk,

..
xk, yk,

.
yk,

..
yk]

T in which

(xk, yk), (
.
xk,

.
yk) and (

..
xk,

..
yk) are respectively the current tar-

get 2D-coordinates of position, velocity and acceleration.

A Bernoulli RFS is particularly suitable to represent the state be-

havior. Let pb refer to the probability of ”birth” - the object was

not here at the previous instant and appears - and let ps be the prob-

ability of ”survival” - the object was here at the previous instant

and is still here. In case of ”birth”, the corresponding birth prob-

ability density function (PDF) is denoted by bk|k−1(xk|c) which

is assumed to be known. Conversely, when the target ”survives”,

the transition PDF depends on the current motion model mc
k and is

denoted π
mc

k

k|k−1(xk|xk−1). Unlike in the classical derivation of the

Bernoulli transition FISST PDF 1 where only one model is used [14],

the multiple-model transition FISST PDF φk|k−1(Xk|Xk−1, c) is

given by:

φk|k−1(Xk|∅, c) =

{

1− pb if X = ∅,
pbbk|k−1(xk|c) if Xk = {xk},

(2)

φk|k−1(Xk|{xk−1}, c) =



















1− ps if X = ∅,

ps
Mc

k
∑

mc
k
=1

pmc
k−1

mc
k
π
mc

k

k|k−1(xk|xk−1)

if Xk = {xk}.
(3)

with pmc
k−1

mc
k

the probability to switch from the model used at

k − 1 to the one used at k in the class c.
Measurement model: by considering that Jk measurements are

available at the instant k, the measurement RFS is denoted Ψk and

is defined as:

Ψk = {ψk,1, ..., ψk,Jk}, (4)

1In the FISST theory developed by Mahler [15], considering a RFS
X = [x1, ...,xn] whose cardinal is random and equal to n the FISST PDF

f̃ can be integrated in the FISST framework as follows:

∫
f̃(X)δX = f̃(∅) +

+∞∑
n=1

1

n!

∫
f̃ ({x1, ...,xn}) dx1...dxn,

with:
f̃ ({x1, ...,xn}) = n!ρ(n)pn(x1, ...,xn),

ρ(n) = P{|X| = n} and pn(x1, ...,xn) are symmetric joint distributions
characterizing their element distributions over the state space.

where
{

ψk,j = [rk,j , θk,j , Lk,j ]
T
}

j=1,...,Jk
. rk,j is the j th mea-

surement of the radar-to-target distance, θk,j the j th measurement

of the bearing angle (ba) and Lk,j the target length extent measure-

ment.

Depending on the characteristics of the ground and the radar settings,

a mean number λ of false detections is expected on the observation

area. Then, Ψk is modelled by a Poisson RFS. The cardinal satisfies:

Jk = P{|Ψk| = a} =
e−λλa

a!
, a = 0, 1, 2... (5)

False detections are modelled as independent and identically dis-

tributed random vectors with a uniform PDF u(ψ) as it is supposed

there is no prior knowledge available on their location. The likeli-

hood FISST PDF ξk of all the detections coming from the clutter is

given by:

ξk(Ψk|∅)
∆
= κ(Ψk) = e−λ

∏

ψ∈Ψk

λu(ψ). (6)

When a target is effectively present, the FISST PDF becomes:

ξk(Ψk|{xk}, l) = (7)

κ(Ψk)



1− pd + pd
∑

ψ∈Ψk

g̃(ψ|xk, l)
κ(Ψk\{ψ})

κ(Ψk)



 ,

with pd the probability of detection considered here constant, l the

constant target length and g̃(.|.) the likelihood function defined in

the following equation. To simplify the notations, we can omit the

second index on the measurements, g̃(.|.) is then expressed as fol-

lows:

g̃(ψk|xk, l) ∝ gk(rk, θk|xk)g
′
k(Lk|xk, l) (8)

In (8), the two terms gk(rk, θk|xk) and g′k(Lk|xk, l) depend on the

measurement model.

Concerning gk(rk, θk|xk), one has:

gk(rk, θk|xk) = N (x, hk(x), Rk)|x=xk
, (9)

withRk = diag(σ2
d, σ

2
ba) the covariance matrix of the measurement

noise on rk and θk. In addition, hk(xk) is defined as follows:

hk(xk) =





√

(xk − xrk)
2 + (yk − yrk)

2

tan−1
(

yk−y
r
k

xk−x
r
k

)



 , (10)

with (xrk, y
r
k) the radar coordinates.

Concerning g′k(Lk|xk, l), Lk is related to the target length l and de-

pends on the target geometry, its orientation and its position relative

to the radar. With an elliptic geometry for the target, the relation

between Lk and the true target length l was defined in [7], leading

to:

g′k(Lk|xk, l) = N (L,αkl, σ
2
uk

)|L=Lk
, (11)

with:

αk =

√

(
.
yk∆yk +

.
xk∆xk )

2 +
(

b
a

)2
(
.
yk∆xk −

.
xk∆yk )

2

√

2

∆xk +
2

∆yk

√

.
x
2
k +

.
y
2
k

, (12)

with ∆xk = xk − xrk, ∆yk = yk − yrk. b/a is the ratio between

the minor and the major axis of the ellipse and is an a priori choice

for the model [7]. It should be noted that the likelihood (11) has the

advantage of being Gaussian regarding the target length.
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In the next subsection, we present the estimation of the state

vector by using a multiple-model Bernoulli filter based on the pro-

posed RFS modelling. Since the computation cannot be carried out

analytically, a particle filter (PF) implementation is used. However,

to exploit the measurement Lk, the target length has to be jointly

estimated with the kinematic parameters. Since it is constant, we se-

lect a Rao-Blackwellized approach to avoid PF degeneracy. One of

the novelty is also that a bank of probabilistic data association filters

(PDA) is run instead of classical Kalman filters in order to take into

account the false alarms.

2.2. Prediction and update equations

Fig. 1: Proposed multi-class Bernoulli filter

The Bernoulli filter enforces the posterior RFS to be Bernoulli. The

Rao-Blackwellized approach consists in decomposing the posterior

FISST PDF as follows:

f̃k|k(X1:k, l|Ψ1:k, c) (13)

= f ′k|k(l|X1:k,Ψ1:k, c)fk|k(X1:k|Ψ1:k, c),

where fk|k(X1:k|Ψ1:k, c) is also a Bernoulli FISST PDF. The

marginal of this FISST PDF at the current time takes the following

form:

fk|k(Xk|Ψ1:k, c) =







1− qk|k, if Xk = ∅,

qk|ksk|k(xk|Ψ1:k, c),

if Xk = {xk},

(14)

with qk|k the probability of presence of the target and 1− qk|k, the

complementary one, i.e. the probability of absence. As we consider

a single-target scenario, qk|k = P{|Xk| = 1|Ψ1:k}. For its part,

sk|k(xk|Ψ1:k, c) is the posterior spatial PDF.

Concerning f ′k|k(l|X1:k,Ψ1:k, c), since there is no ambiguity on

the cardinal conditionally upon Xk, this FISST PDF reduces to a

PDF. The two terms appearing in (13) are then used to implement a

Rao-Blackwellized approach.

In a first step, let us detail the calculation of fk|k(Xk|Ψ1:k, c).
Prediction equation: once the transition FISST PDF (2) is defined,

the prediction equations are derived from (14) and from the follow-

ing relation:

fk|k−1(Xk|Ψ1:k−1, c) = (15)
∫

φk|k−1(Xk|X
′, c)fk−1|k−1(X

′|Ψ1:k−1, c)δX
′,

= φk|k−1(Xk|∅, c)fk−1|k−1(∅|Ψ1:k−1, c)

+

∫

φk|k−1(Xk|X
′, c)fk−1|k−1(X

′|Ψ1:k−1, c)δX
′,

Considering the case when there is no target and combining (2), (14)

and (15) leads to the prediction of the existence probability:

qk|k−1 = pb(1− qk−1|k−1) + psqk−1|k−1, (16)

and the spatial PDF prediction can be expressed as the following sum

of two terms:

sk|k−1(xk|Ψ1:k, c) =
pb(1− qk−1|k−1)bk|k−1(xk|c)

qk|k−1

+
psqk−1|k−1

qk|k−1

(17)

×

∫ Mc
k

∑

mc
k
=1

pmc
k−1

mc
k
π
mc

k

k|k−1(xk|x
′)sk−1|k−1(x

′|Ψ1:k, c)dx
′.

Update equation: by using (6), (7) and the Bayes rule as derived in

the FISST theory in [15], the updated FISST PDF is given by:

fk|k(Xk|Ψ1:k, c) =
ξk(Ψk|Xk)fk|k−1(Xk|Ψ1:k−1, c)

fk(Ψk|Ψ1:k−1)
. (18)

By considering the case when there is no target and combining (6),

(7), (14) and (18), the update equation of the probability of existence

is given by:

qk|k =
1−∆k

1− qk|k−1∆k

qk|k−1, (19)

where

∆k = pd. (20)


1−
∑

ψ∈Ψk

∫

g̃k(ψ|x, l)sk|k−1(x|Ψ1:k−1, c)fl(l|Ψ1:k−1, c)dldx

λu(ψ)



,

with fl(l|Ψ1:k−1, c) the predictive distribution on the target length.

By considering the case when the target is present and by combining

(7), (14) and (18), the update equation of the spatial PDF is derived

as:

sk|k(xk|Ψ1:k, c) = (21)

1− pd + pd
∑

ψ∈Ψk

∫
g̃k(ψ|xk,l)fl(l|Ψ1:k−1,c)dl

λu(ψ)

1−∆k

sk|k−1(xk|Ψ1:k, c).

Since the above equations are analytically intractable, a PF imple-

mentation is considered and the FISST PDF of interest is approxi-

mated as:

fk|k(X1:k|Ψ1:k, c) ≃
N
∑

i=1

w
(i,c)
k δ(X1:k −X

(i,c)
1:k ), (22)

where the X
(i,c)
1:k are the particles and the w

(i,c)
k the weights. For the

sake of brevity, we omit the PF derivation in this paper. However, it

should be noted that the particles are simulated with the optimal law

of propagation.

The term f ′k|k(l|X
(i,c)
1:k ,Ψ1:k, c) can then be independently updated

conditionally upon each particle. It should be noted that knowing

the current ith particle, the dependency on the bearing angles and

distance measurements disappears.

Let us decompose the measurement RFS Ψk into two RFS

Zk = {zk,1, ..., zk,Jk} with
{

zk,j = [rk,j , θk,j ]
T
}

j=1,...,Jk
and
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Λk = {Lk,1, ..., Lk,Jk}, then f ′k|k(l|X
(i,c)
1:k ,Ψ1:k, c) reduces to

f ′k|k(l|X
(i,c)
1:k ,Λ1:k, c).

Since the {Lk,j}j=1,...,Jk depend linearly on l and the measure-

ment noise is Gaussian, the target length can then be optimally esti-

mated by a Kalman filter. However, at one instant, as more than one

measurement can be available, a target-to-measurement association

algorithm would be required. Algorithms perfoming hard decisions

on the association suffer a performance decrease when the number

of false detections increases. For this reason, we suggest estimating

l by a probabilistic data association Kalman filter [16]. It assumes

that the posterior PDF of l is given by the following sum:

f ′k|k(l|X
(i,c)
1:k ,Λ1:k, c) =

Jk
∑

j=0

β̃
(i,c)
k,j p(l|Lk,j ,Λ1:k−1, X

(i,c)
1:k , c).

(23)

The weight β̃
(i,c)
k,j represents the probability that the j th measurement

is the one that arises from the target. j = 0 corresponds to the missed

detection hypothesis. Note that from now on, all the quantities are

computed conditionally to the ith particle, which is denoted by the

upperscript (i, c). To calculate the weights {β̃(i,c)
k,j }j=0,...,Jk , the

likelihood β
(i,c)
k,j is first computed as follows:

β
(i,c)
k,j =

{

1− pd for j = 0
N (L;α

(i,c)
k

l̂
(i,c)
k−1|k−1

,S
(i,c)
k

)|L=Lk,j
pd

λ
otherwise,

(24)

with S
(i,c)
k =

(

α
(i,c)
k

)2

P
(i,c)

k−1|k−1 + σ2
uk

, P
(i,c)

k−1|k−1 the Kalman

error variance on the estimation recursively obtained. l̂
(i,c)

k−1|k−1 is

the estimate of l at the instant k − 1 knowing Λ1:k−1. In addition,

{β̃(i,c)
k,j }j=0,...,Jk corresponds to the normalized {β(i,c)

k,j }j=0,...,Jk .

In our PF implementation, a PDA is thus run for each particle.

In the next subsection, we present some simulation results.

3. COMPARATIVE STUDY

In this simulation part, the relevance of the proposed Bernoulli PDA

Rao-Blackwellized particle filter using the target extent measure-

ment is studied.

Simulation protocol:

A scenario with two targets is considered. The first one, denoted T1,

represents a non-maneuvering target. Its length is 120m, and its tra-

jectory is generated through two constant velocity (CV) models with

standard deviations on the acceleration σCV 1 = 5 × 10−2 m.s−2

and σCV 2 = 0.2m.s−2, the latter model will be referred to CV2 in

the following. The probability to switch from one model to the other

is 0.02 and the starting probability is 0.5 for both models. The sec-

ond target, denoted T2, represents a maneuvering light object whose

length is 10m. Its trajectory can be generated by 5 motion models.

Two of them are CV motion models with standard deviations on the

acceleration 0.1 and 0.2 m.s−2. The 3 others are Singer models

whose standard deviations on the acceleration are 1, 2 or 5 m.s−2

and their correlation constant is τ = 15 s. The probability to switch

from one model to another one is 0.1.

For these two targets, the characteristics of the measurement noises

are the same and the standard deviations are σd = 10 m for the

radar-to-target distance, σba = 0.001 rad for the bearing angle

and σu = 5 m for the target extent measurement. The period T
between two scans is constant and is equal to 1 s. The probability

of detection is 0.95 and the false detection rate is 10−6 per m2. 100

Monte Carlo simulations are carried out to compute average results

and each trajectory has 100 scans.

Comparison:

Four estimation filters are compared. The first one, denoted EKF, is

an extended Kalman filter run with the proper motion model. It can

be seen as a reference. The three others are multiple-class Bernoulli

filters and are denoted by BF1, BF2 and BF3. They are run with

C = 2 and 1000 particles for each motion model. The first class

uses CV2 as motion model. The second class uses a CV2 and a

Singer model with σSinger = 5m.s−2 and τ = 15 s. The correct

measurement model is used for every filter. BF1 uses an a priori

propagation law in the PF whereas BF2 and BF3 use the optimal

law. In addition, the target extent measurements with the correct

associated measurement model is used in BF3.

Our methods:

Config. & Target Meas. EKF BF1 BF2 BF3

T1 7.68 5.62 3.87 3.79 3.40

T2 7.72 6.23 4.61 4.43 4.34

Table 1: Root mean square errors on positions (m)

x(m)

300 350 400 450

y
 (

m
)

180

190

200

210

220

BF3

BF2 - without optimal propagation law

BF1 - without optimal propagation law neither target length

EKF

True trajectory

Measurements

False detections

Fig. 2: T2 true trajectory and estimations

According to Table 1, the proposed multiple-class Bernoulli

filter for JTC which uses the target extent measurement man-

ages well false detections and the non-linearity introduced by the

measurement-to-state relation. Optimal law for particle propagation

improves the estimation accuracy. When using the target extent, the

algorithm provides an even more accurate result by facilitating the

classification. In Fig. 2, one simulation with T2 is presented.

4. CONCLUSIONS AND PERSPECTIVES

In this paper, we derive a multiple-class Bernoulli filter for JTC

which uses the target extent measurement. It should be noted that

when using the bank of PDA, the highly parallelisable structure in-

herited from the particle filter implementation is still preserved. As

the estimated length is a scalar, no costly operations such as ma-

trix inversions are needed. In further works, we plan to investigate

a multi-target scenario by using a labeled multi-Bernoulli filter. It

would have the advantage of allowing each target to be propagated

with a different set of models which is not the case with current ap-

proaches based on probability hypothesis density (PHD) filters.
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