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ABSTRACT

One of the most important challenges in target tracking is the model-
ing of correlated and non-Gaussian random processes. In this paper,
a new target tracking approach by means of particle filtering in en-
vironments with highly correlated sensors, is discussed. The goal is
to provide an accurate model of dependency structure in multivari-
ate observation likelihood function, with non-Gaussian marginals to
obtain a new algorithm in tracking problems. The main novelty of
our method, termed as Copula-based Sequential Importance Resam-
pling particle filter (CSIR-PF), is an application of the copula theory
which is a powerful tool in correlation modeling in statistical theory.
The precise model obtained by copulas makes a great improvement
in particles’ weightings. The performance of our proposed method
is evaluated through the simulations of target tracking problems with
highly correlated sensors. Results clearly indicate the acceptable
performance of CSIR-PF.

Index Terms— Target tracking, copula theory, particle filter,
correlated sensors, multisensor

1. INTRODUCTION

Very often in many applications recently, researchers ought to model
the underlying dynamics of a physical system accurately by in-
cluding the elements of nonlinearity and non-Gaussianity. Many
problems in engineering require estimation of time varying state
of the system under investigation, through the noisy observations.
Discrete-time approach is widespread and appropriate in dynamic
state estimation. To model a time-series in state-space approach,
we focus our attention on the state vector, which contains all rel-
evant information required to describe the underlying system. In
many target tracking applications, the kinematic characteristics of
the target motion is considered as this information. In practice, the
measurements of the state vector are corrupted with environment
noise. State space approach is a suitable tool for handling multivari-
ate and nonlinear/non-Gaussian processes [1]. More information on
the application of nonlinear/non-Gaussian state space models can be
found in [2].

At least two models are required to analyze aforementioned sys-
tems, the system(dynamic) model and the measurement model. The
former describes the time evolution of states and the later one rep-
resents the relation between observations with states of target. As
stated at [1], given probabilistic state-space formulation of these
models makes the Bayesian framework a suitable tool for the cor-
responding system analysis. In on-line tracking scenarios in which
state update is necessary, recursive filtering is an appropriate solu-
tion and contains two steps: prediction and update. In prediction
step, PDF of target states is predicted using system model and for-
ward from one measurement time to the next. In other words, since

the state is disturbed by unknown perturbations, the prediction pro-
cedure translates, deforms, and spreads the state PDF. In the up-
date step by means of the recent measurement, the predicted PDF
is improved. Since the posterior probability density function in the
Bayesian approach contains all available statistical information, it
might be the complete solution to the estimation problem [1]. In
many target tracking problems, optimal solution does not exist be-
cause some linear/Gaussian assumptions [3] are not held, therefor
applying approximation methods seems to be necessary. Generally
in practical nonlinear/non-Gaussian tracking problems, it is neces-
sary to apply more complex and sophisticated nonlinear filtering
methods [4]. The standard nonlinear filtering techniques can not
model all of the salient features of the PDFs accurately [4]. Recently
the set of Monte Carlo filtering techniques known as particle filter-
ing, found numerous applications in problems wherein the PDFs are
modeled as general as possible without any limitative assumptions
on their forms. Particle filtering is a suboptimal solution to such
problems, also is known variously as bootstrap filtering [5].

In practical radar and sonar applications [6], [7], [8] correlated
sensor measurements might be engaged with the scenario; for exam-
ple in Shen [6] due to the usage of the same jammer signal, the noise
of sensors are correlated. Considering dependency, which involves
statistical information about PDFs, improve the estimation states in
the filtering methods that deal directly with PDFs. Another example
is considered by Liao and Wu in [9] in which they proposed the algo-
rithm for two dimensional angle estimation in united circular arrays.
Such a measurement model is used in bearing only tracking (BOT)
problems. In this paper, we propose a new method using copula em-
bedded in for nonlinear and non-Gaussian correlated target particle
filtering. The paper is structured as follows: Section (2) contains the
problem statement followed by a brief summary of the copula the-
ory and particle filtering method that the proposed approach is based
upon. Finally at the end of this section, proposed method explained
in details for target tracking. Some simulation results are depicted in
Section (3) to approve our proposed method.

2. PROBLEM STATEMENT
2.1. Copula

Quantitative finance and tail risk minimization are recent fields in
which the copula concept have found many applications [10]. In
addition with these fields, target tracking and communications are
another grounds that they are playing an important role in [11], [12].
Nowadays, copula has taken the place of classical correlation model-
ing tools such as Pearson correlation coefficient in describing depen-
dency structure among random variables [11]. According to Nelsen
[13] and Skalar’s theorem [14], copulas are functions that describe
the joint distribution of multivariate random variables through the
following theorem:
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Theorem 1. let F be an n-dimensional cumulative distribution
function (CDF) with margins F1, F2, · · · , Fn. Then, there exists a
function C : [0, 1]n → [0, 1] such that:

F (x1, . . . , xn) = C (F1 (x1) , . . . , Fn (xn)) (1)

Conversely, if C is a copula and F1, F2..., Fn are CDFs, then the
function F defined by (1) is an n-dimensional CDF with margins
F1, F2, · · · , Fn. so F is uniquely decomposed.

The proof of this theorem and more properties of C can be found
in [13]. Function C(·) has a useful property that helps find its closed
form formula: a copula is itself a CDF, defined on [0, 1]n, with uni-
form margins. The description of multivariate CDFs by employing
the copula function provides a suitable flexibility, since the margins
and their dependences structure can be selected independently [11].
As stated in [15], for any copula function, there is a corresponding
copula density function c(·) that is derived from the derivative of the
function C in (1) as follows:

f (x1, . . . , xn) =
∂nC (F1 (x1) , . . . , Fn (xn))

∂F1 (x1) . . . ∂ Fn (xn)

×
n∏

i=1

fi

(
dFi (xi)

∂F1 (x1) . . . ∂ Fn (xn)

)
(2)

where f1 (x1) , . . . , fn (xn) are the marginal PDFs, so the
multivariate joint PDF is derived as follows:

f (x1, . . . , xn) = c (F1 (x1) , . . . , Fn (xn))×
n∏

i=1

fi (xi)

(3)
As stated before, the copula density function c(·) can be selected in-
dependent from the marginal PDFs, so copula function allows a con-
sistent and flexible modeling of the dependence structure. In such
a filtering methods that is dealing with multivariate PDFs directly,
more accurately modeling of the dependence structure causes cor-
rection in tracking of states. In one point of view, copulas can be
grouped into two classes; elliptical and Archimedean copulas [13]
[16]. The most prominent elliptical copulas are normal and Stu-
dents t. Therein class different levels of dependency between the
margins can be specified which is a useful property. These are im-
plicit copulas that do not have a simple closed form, but are implied
by well-known multivariate distribution functions [17]. There are
also a number of copulas, explicit copulas, which are not derived
from multivariate distribution functions, but do have simple closed
forms [17] like Archimedean copula family. Archimedean copulas
are a popular class, because of their easy implementation. Many
copulas as Clayton, Frank, Gumbel, . . . belong to this class [13]. In
this paper, three kinds of copulas, are applied for modeling the joint
PDF of measurement model; Gaussian, Clayton and Student’s t. The
mathematical relationships for these copula family are mentioned in
Table (1). That x = [x1, x2] , x1 = Φ−1 (u) and x2 = Φ−1 (v).
The function Φ−1 is the inverse cumulative distribution function of
a standard normal distribution. R is the correlation matrix of vec-
tor x was introduced. Theoretically, depending on the application,
copula function can be introduced in an arbitrary formulation. This
powerful tool is used in updating the state of proposed method, that
will be explained in details in the next subsections.

2.2. Particle Filtering

Particle filters perform sequential Monte Carlo (SMC) estimation
based on point mass (or ”particle”) representation of probability den-

Table 1: Some copula distribution

copula Name Bivariate copula density c (u, v)

Gaussian ♢ 1

|R|
1
2
exp

{
− 1

2
xT

(
R−1 − I

)
x
}

Students t †
Γ( ν+2

2 )Γ( ν
2 )

(
1+ xT R−1x

ν

)− ν+2
2

√
|R| Γ( ν+1

2 )2
∏2

i=1

(
1+

x2
i
ν

)− ν+1
2

Clayton ∗ (1 + α) (uv)−α−1[−1 + u−α + v−α
]−2− 1

α

with parameters :
♢ R ∈ [−1, 1]2×2, † R ∈ [−1, 1]2×2 & ν > 0, ∗ α ∈ [−1,+∞] \ {0}

sities [3]. There are several variants of the particle filter that are ex-
plained in details in [1]. In this article, we use some of them such as
sequential importance sampling (SIS), sampling importance resam-
pling (SIR). The sequential importance sampling (SIS) algorithm is
a Monte Carlo (MC) method that forms the basis for most sequential
MC filters developed over the past decades [1]; see [18] for more
details. The basic idea is to use a set of random samples with cor-
responding weights to describe the desired posterior density func-
tion and compute estimates based on these samples and weights.
To define the problem of nonlinear filtering, the target state vector
{xk ∈ Rnx}, where nx is the dimension of the state vector; R is a
set of real numbers; {k ∈ N} is the time index; and N is the set of
natural numbers must be introduced. Here index k is assigned to a
continuous-time instant tk. The target state evolves according to the
following discrete-time stochastic model:

xk = fk−1 (xk−1,vk−1) (4)

where fk−1 is a known, possibly nonlinear function of the state xk−1

and vk−1 which is referred to as a process noise sequence. The
objective of nonlinear filtering is to recursively estimate xk from
measurements {zk ∈ Rnz}. These measurements are related to the
target state via the measurement equation:

zk = hk (xk,wk) (5)

where hk is a known, possibly nonlinear function and wk is a mea-
surement noise sequence, in general non-Gaussian. For the given
random measure set

{
xi
0:k, ω

i
k

}Ns

i=1
, the posteriori PDF approxima-

tion at time k is as follows:

p (x0:k|z1:k) ≈
Ns∑
i=1

ωi
kδ

(
x0:k − xi

0:k

)
(6)

wherein
{
xi
0:k

}Ns

i=1
is a set of support points with their correspond-

ing weights
{
ωi
k

}Ns

i=1
that

∑
i

ωi
k = 1, and x0:k = {xj , j = 0, . . . , k}

denotes all states until time k. By applying importance sampling
method the samples are drawn and the corresponding weights are
computed [19], [18]. Accordingly to an importance density function
q(·) the weights in (6) are:

ωi
k ∝ p(xi

0:k|z1:k)
q(xi

0:k|z1:k)
(7)
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Returning to the sequential case, as stated in [3] the weight updating
equation are as follows:

ωi
k ∝ ωi

k−1

p
(
zk|xi

k

)
p
(
xi
k|xi

k−1

)
q
(
xi
k|xi

k−1, zk
) (8)

and the posterior filtered density p (xk|z1:k) can be approximated
as:

p (xk|z1:k) ≈
Ns∑
i=1

ωi
kδ

(
x k − xi

k

)
(9)

It can be shown that as Ns → ∞, (9) converge to the true posterior
density that is not feasible.

As the degeneracy phenomenon is presented in [18], the com-
mon problem with the SIS, is inevitable that occurs after a few iter-
ations, when all except one particle will have negligible weight [1].
A parameter was presented in [19] and [20] to detect the degeneracy,
termed effective sample size Neff :

N̂eff =
1∑Ns

i=1 (ω
i
k)

2 (10)

However, the first impractical way to reduce this effect requires a
very large Ns, but with good choice of importance density or apply-
ing suitable resampling methods [1] this effect can be diminished.
In the resampling method, low weighted samples were eliminated
and their high importance wights counterparts were multiplied. The
resampling step is a crucial and computationally expensive part in a
particle filter [18]. The most frequently encountered algorithms are
multinomial resampling [21], stratified resampling [18], [22], sys-
tematic resampling [22], [1] and residual resampling [20].

2.3. Copula-based SIR-Particle Filtering

Because the problem which is under investigation has nonlinear/non-
Gaussian conditions, in this paper, it’s impossible to use optimal
choice of importance density [3]. Since the prior density is the
most common choice and often convenient for being the importance
density, we use it in our method because of its simple implementa-
tion [1].

q
(
xk|xi

k−1, zk
)
= p(xk|xi

k−1) (11)

hence, (8) is modified as follows:

ωi
k ∝ ωi

k−1p
(
zk|xi

k

)
(12)

where p
(
zk|xi

k

)
is conditional joint probability density function

named likelihood function. Accurate determination of this PDF
achieves careful weight updating. In the case of correlated sensors,
except a few PDF like Normal, it is so hard to describe arbitrary cor-
relations in general joint PDFs. Pearson correlation coefficient, is a
measure of the linear dependency between two stochastic variables.
But it cannot model nonlinear dependency among non-Gaussian
random variables well. Clearly when the noise of sensors are inde-
pendent, the likelihood function is as follows:

p
(
zk|xi

k

)
=

∏
j

pj(nj)|n=zk−gk(xk)
(13)

where pj (nj) is the PDF of noise of the jth sensor, nj is the jth

element of noise vector n. But in the case of correlated sensors
with non-Gaussian marginals, an accurate structure is necessary to

describe the correlations precisely, which is done by the copula con-
cept. Accordingly and as what stated before:

p
(
zk|xi

k

)
= c (u)

∏
j

pj(nj)|n=zk−gk(xk)
(14)

where c (.) is copula density function and u is:

u = [P1 (n1) , P2 (n2) , . . . , PM (nM )] (15)

that is the CDF values vector and Pj (.) is the CDF of the noise of
jth sensor, then in problem with M sensors, (12) becomes:

ωi
k ∝ ωi

k−1 c (u)
∏
j

pj(nj)|n=zk−gk(xk)
(16)

So it means that accurate weights updating are done by copula den-
sity, exactly because of precise modeling of likelihood function. As
stated earlier the degeneracy problem in SIS algorithm is common
and inevitable, hence, the resampling method is used to reduce its
bad effects on weighting particles. In resampling step, new set of
random samples

{
xi∗
k

}Ns

i=1
is generated that will be used in next

iteration. Finally to compute state estimate at time k, we should
take a criterion [23], which is here, the minimum mean-square error
(MMSE), and its estimate is the conditional mean of xk :

x̂MMSE
k = ∫ xkp (xk|z1:k) dxk (17)

So with discrete approximation of p (xk|z1:k) and according to (9),
the final estimation is obtained as follows:

x̂MMSE
k ≈

Ns∑
i=1

ωi
kx

i
k (18)

According to what have been declared, the pseudo code of our pro-
posed method, the Copula-based Sequential Importance Resampling
particle filter (CSIR-PF) becomes as Algorithm(1).

Algorithm 1 Copula-based SIR-PF

1: [ x̂k,
{
xi
k, ω

i
k

}
]= CSIR[

{
xi
k−1, ω

i
k−1

}NS

i=1
, zk ]

2: for i = 1 : Ns do
3: Draw a xi

k ∼ p(xk|xi
k−1)

4: Compute u (16)
5: Assign a weight ωi

k (15)

6: Compute total weight: t = SUM[
{
ωi
k

}Ns

i=1
]

7: for i = 1 : Ns do
8: Normalize: ωi

k = t−1ωi
k

9: Compute N̂eff (10)

10: if N̂eff < NT then
11: Resampling procedure

12: [
{
xj
k, ω

j
k

}
]=RESAMPL[[

{
xi
k, ω

i
k

}Ns

i=1
]

13: for i = 1 : Ns do
14: Normalize: ωi

k = t−1ωi
k

15: Compute MMSE estimate: x̂k (18)
16: for i = 1 : Ns do
17: x̂k = x̂k + ωi

kx
i
k

The assumptions required for applying this method are very
weak. Firstly, the dynamics and measurement models, fk−1 and
hk in (4) and (5), respectively, have to be known; and secondly it
is required to be able to do sample realizations from the process
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Fig. 1: 2D Tracking in the case of Clayton copula, target starts moving with initial state [x, y, vx, vy, ax, ay] = [−100, 50, 200, 10, 20,−30]

noise distribution of vk−1 and from the prior. Finally, the likelihood
function p (zk|xk) needs to be available for pointwise evaluation.
Noticeably, when in such cases, we face to highly correlated sensors,
it causes the abundance of samples in joint PDF density p (zk|xk)
to grow up, so the probability amount at points that are slightly
away from the peak/peaks becomes negligible because of inertia and
discipline which occurred by correlation. This event will increase
the probability of happening degeneracy problem. Therefor it is so
important to use appropriate resampling method. Systematic Re-
sampling [22] is an efficient scheme, and so simple to implement,
its computational complexity is O(N) and it minimizes the MC
variation. Complete pseudo code can be found in [3].

3. SIMULATION AND RESULTS

Although our proposed method can be applied in sonar tracking
problems, here a synthetic radar scenario is considered, in order to
qualitatively gauge performance. Assume a moving target with con-
stant acceleration1 motion model in x − y plan. Measurements are
obtained by two correlated sensors, range and bearing. These mea-
sured values are mixed with additive noises. The noise of range
measurements are correlated with the noise of other sensor, and also
it has non-Gaussian marginals and nonlinear non-Gaussian correla-
tion structure. Range sensor’s noise has Rayleigh distribution with
var = 10 m and other one has Generalized Extreme Value Distri-
bution (GEV) with var = .4 rad. Eventually the estimated states by
CSIR-PF are compared to known and general PFs [1] such as generic
particle filter (GPF) that the correlation structure is not considered
therein. In both algorithms Ns = 104. The traditional measure of
performance, i.e. Root Mean Squared Error (RMSE) is selected to
compare final results. In some scenarios with different correlation
structures, we model the correlation via these copulas: Gaussian,
Studens’ t and Clayton. Assuming the copula distributions with their
parameters: Gaussian (ρ = .98), Student’s t (ρ = .98 & ν = 1)
and Clayton (α = 25), the sensors noise are highly correlated; they
are named in the tables by aH , bH and cH scenarios respectively.
Note that ρ is the off-diagonal element of the correlation matrix R.
Also aL, bL and cL indicate the scenarios with lowly correlated sen-
sors that are correspond to the Gaussian copula (ρ = .1), Student’s t
(ρ = .1 & ν = 1) and Clayton (α = 2) distributions. Also the corre-
lation in aM , bM and cM has these distributions: Gaussian (ρ = .5),
Student’s t (ρ = .5 & ν = 1) and Clayton (α = 15) respectively. As
it was shown in Table(2), for scenarios with more highly correlated
sensors, the proposed method clearly performs better than GPF. The
results obtained through independent Mont Carlo simulations. The

1also called Continuous/Discrete Wiener process acceleration

tracking results in x-y plain for two scenarios with Clayton copula
are depicted if Fig(1). As it’s foresighted, the improvement per-

Table 2: RMSEs (m) of 10 Mont-Calro simulations

Mean Variance

Scenario GPF CSIR-PF Imp(%)♢ Imp(%)

aH 0.10243 0.0735 +28.2 +61.2

bH 0.10418 0.06757 +35.1 +20.1

cH 0.11911 0.058382 +50.1 +50.8

aM 0.1142 0.10603 +7.1 +16.3

bM 0.10589 0.08848 +16.4 +30.7

cM 0.10736 0.073692 +31.4 +07.6

aL 0.13269 0.13341 -00.5 +01.0

bL 0.1167 0.097385 +16.6 +04.7

cL 0.10741 0.087706 +18.3 -13.0

♢ is improvement percentage of CSIR-PF in comparison to GPF.

centage has been decreased in aL, bL and cL scenarios because the
correlation between sensors noise is so low.

4. CONCLUSION

In this paper a new approach is proposed for nonlinear and non-
Gaussian moving target tracking problems with correlated sensors.
The proposed method is based on the particle filtering and the cop-
ula theory. We have detailed the algorithm that explicitly takes into
account the correlation of the sensors noise in the filtering equa-
tions. This method uses the copula concept to improve weighting
particles by accurate modeling of the correlation structure. By use
of the copula, there is no limitation to model any arbitrary correla-
tion between sensors even in high-dimensional state spaces. Hence,
the combination of particle filtering technique and the copula con-
cept builds a novel method to improve target tracking in indicated
problems; with increasing the correlation, the performance has been
improved. The performance of method was compared to the former
method, the GPF, that the correlation of sensors noise is not con-
sidered therein. Precise estimated results confirm the validity of our
proposed method.
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