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ABSTRACT

In this work, we present a novel method for tracking an el-
liptical shape approximation of an extended object based on
a varying number of spatially distributed measurements. For
this purpose, an explicit nonlinear measurement equation is
formulated that relates the kinematic and shape parameters
to a measurement by means of a multiplicative noise term.
Based on the measurement equation, we derive an extended
Kalman filter (EKF) for a closed-form recursive measurement
update. The performance of the proposed method is demon-
strated with simulations.

Index Terms— Extended object tracking, multiplicative
noise, Kalman filter, extended Kalman filter

1. INTRODUCTION

In contrast to point target tracking, the extended object track-
ing problem deals with multiple spatially distributed measure-
ments per target object. The extended object tracking prob-
lem is becoming increasingly important in applications such
as autonomous driving. For a detailed recent overview, we
refer to [1, 2].

In case of high sensor noise and a few measurements per
scan, one is usually bound to work with simple shape ap-
proximations such as ellipses. One of the most common ap-
proaches for this purpose is the random matrix approach [3, 4,
5, 6], which characterizes the object extent by a random ma-
trix. Another approach is the Random Hypersurface Model
(RHM) [7, 8, 9], which assumes that measurements origi-
nate from randomly scaled versions of the object contour. In
this manner, extended object tracking is reduced to a curve
fitting problem. This approach is tailored to complex, i.e.,
star-convex, shapes and (rather) low measurement noise.

This paper builds upon our idea to use a multiplicative
noise term in the measurement equation [10] to model the
spatial distribution of the measurements. In order to estimate
the shape with a linear estimator, a pseudo-measurement
must be constructed based on the original measurements
[10, 11]. While the original work [10] was restricted to
axis-aligned ellipses, we developed in [11] a Second Order
Extended Kalman filter (SOEKF) [12, 13] that is capable of
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Fig. 1: Illustration of the measurement model. The location
of the object is mk =

[
mk,1,mk,2

]T ∈ R2 at time k. The

ellipse parameters for the shape pk =
[
αk, lk,1, lk,2

]T ∈ R3

consist of the orientation and semi-axes lengths. Measure-
ments are spatially distributed on the object and additionally
corrupted by additive sensor noise. The i-th measurement at
time k is denoted as yi

k ∈ R2.

estimating the parameters of arbitrary aligned ellipses. Un-
fortunately, the SOEKF [11] requires tedious calculations of
several Hessians.

In this work, we solve this issue by developing an ex-
tended Kalman filter [14, 15] that does not involve any Hes-
sians at all. For this purpose, the fundamental insight is that
the expectation and covariance of the pseudo-measurement
can be approximated directly from the original measurement
covariance matrix. Compared to the random matrix approach
[3, 4, 5, 6], our approach explicitly works with the orientation
and lengths of the semi-axes of an ellipse. A major advan-
tage is that one can easily formulate process models for the
individual shape parameters, e.g., orientation changes can be
more significant than changes of the semi-axes.

2. PROBLEM FORMULATION

The kinematic parameters of the extended object at time k

rk =
[
mT

k , ṁ
T
k , . . .

]T
(1)
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consist of the object position mk ∈ R2, velocity ṁk ∈ R2,
and possible further quantities. Following the same parame-
terization for ellipses as in [11], the shape parameters are

pk =
[
αk, lk,1, lk,2

]T ∈ R3 , (2)

where αk ∈ [−π, π) is the orientation, and lk,1 and lk,2 ∈ R+

indicate the lengths of the semi-axes, see Fig. 1.

2.1. Measurement Model

A fluctuating number of two-dimensional Cartesian measure-
ments Yk = {yi

k}nk
i=1 is available at each time k. Each indi-

vidual measurement yi
k ∈ R2 is related to the kinematic and

shape parameters according to the multiplicative noise model
[10, 11] for extended objects. The basic idea is that yi

k results
from the object center plus randomly scaled semi-axes plus
measurement noise (see Fig. 1), i.e.,

yi
k = mk +

[
cosαk

sinαk

]
lk,1h

i
k,1 +

[
− sinαk

cosαk

]
lk,2h

i
k,2 + vi

k .

(3)
In compact form (3) can be written as

yi
k = Hrk +R(αk)

[
lk,1 0
0 lk,2

]
︸ ︷︷ ︸

:=S(pk)

[
hik,1
hik,2

]
+ vi

k , (4)

with H =
[
I2 0

]
(where I2 is the two-dimensional iden-

tity matrix and 0 is the null matrix with appropriate dimen-

sions), rotation matrix R(αk) =

[
cosαk − sinαk

sinαk cosαk

]
, and

multiplicative noise hi
k =

[
hik,1
hik,2

]
∈ R2. We assume both

hik,1 and hik,2 to be mutually independent of all other ran-
dom variables. Furthermore, we suggest their variances to
be σh1

= σh2
= 1

4 in order to match an elliptical uniform
distribution, see [2].

2.2. Dynamic Model

Both the kinematic and the shape parameters of the extended
object are assumed to follow a linear Markov model

rk+1 = Ar
krk +wr

k , (5)
pk+1 = Ap

kpk +wp
k , (6)

where Ar
k and Ap

k are process matrices; wr
k and wp

k specifiy
zero-mean Gaussian process noise with covariance matrices
Cw

r and Cw
p . Note that we can model the temporal evolution

of each individual shape parameter.

3. EXTENDED KALMAN FILTER

In this section, we derive an extended Kalman filter for recur-
sively estimating both the kinematic and shape parameters of

an extended object. An essential assumption that we make is
that the shape and kinematic parameters are independent. By
this means, we can significantly simplify the update formulas.

3.1. Measurement Update

In the measurement update step, we would like to calculate
the posterior means and covariances for the kinematic and
shape parameters

r̂ik, C
r
k,i and p̂i

k, C
p
k,i ,

that incorporate all measurements up to the i-th measurement
yi
k based on on the previous estimate

r̂i−1
k , Cr

k,i−1 and p̂i−1
k , Cp

k,i−1 ,

where i = 0, · · · , nk. Note that individual measurements in
Yk are independent (conditioned on the state), so that they can
be processed sequentially.

It is shown in [10] that the shape parameters are not ob-
servable if a linear measurement update with yi

k is performed.
Hence, we propose a two-step measurement update. First, the
kinematic parameters are updated using the original measure-
ment. Then, we create a pseudo-measurement ỹi

k by an un-
correlated transformation [16] on yi

k in order to update the
shape variables. Note that there is no double-counting of
the measurement as the shape and kinematic parameters are
independent.

3.1.1. Kinematic Parameters

It is obvious that (4) is linear in the kinematic state and non-
linear in the shape parameters. By approximate pk using the
previous estimate p̂i−1

k , we have

yi
k ≈ Hrk + S(p̂i−1

k )hi
k + vi

k . (7)

According to the Kalman filter [15], we obtain

E{yi
k} = Hr̂i−1

k , (8)

Cry
k,i = Cr

k,i−1H
T , (9)

Cyy
k,i = HCr

k,i−1H
T + S(p̂i−1

k )Ch
(
S(p̂i−1

k )
)T

+Cv.

(10)

The standard Kalman filter measurement update results in the
equations

r̂ik = r̂i−1
k +Cry

k,i

(
Cyy

k,i

)−1(
yi
k − E{yi

k}
)
, (11)

and
Cr

k,i = Cr
k,i−1 −Cry

k,i

(
Cyy

k,i

)−1(
Cry

k,i

)T
. (12)
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3.1.2. Shape Parameters

To exploit the information contained in a measurement in a
linear estimator, we construct a pseudo-measurement by tak-
ing the 2-fold Kronecker product of the original measure-
ment. Furthermore, we shift the measurement by its expec-
tation so that the expectation and covariance of the pseudo-
measurement are the second and fourth central moments of
the original measurement. In short, we define the pseudo-
measurement

ỹi
k =

 (yik,1 − m̂i−1
k,1 )

2

(yik,2 − m̂i−1
k,2 )

2

(yik,1 − m̂i−1
k,1 )(y

i
k,2 − m̂i−1

k,2 )


︸ ︷︷ ︸

:=g(mk,pk,h
i
k,v

i
k)

. (13)

We assume the covariance we get from (10) is

Cyy
k,i =

[
σ11 σ12
σ12 σ22

]
. (14)

Then, according to the definition of the second and fourth
central moments

E{ỹi
k} =

[
σ11 σ22 σ12

]T
, (15)

Cỹỹ
k,i =

 3σ2
11 σ11σ22 + 2σ2

12 3σ11σ12
σ11σ22 + 2σ2

12 3σ2
22 3σ22σ12

3σ11σ12 3σ22σ12 σ11σ22 + 2σ2
12

 . (16)

In order to calculate the cross-covariance Cpỹ
k,i, the pseudo-

measurement equation (13) is linearized around m̂i−1
k and

p̂i−1
k according to a Taylor series expansion

ỹi
k ≈ g(m̂i−1

k , p̂i−1
k ,hi

k,v
i
k)

+ J̃m(hi
k,v

i
k)(mk − m̂i−1

k )

+ J̃p(h
i
k,v

i
k)(pk − p̂i−1

k ) , (17)

where J̃m(hi
k,v

i
k), J̃p(h

i
k,v

i
k) are the Jacobians of (13)

evaluated at m̂i−1
k and p̂i−1

k with respect to mk and pk. Note
that the expectation of J̃m(hi

k,v
i
k) is zero and it is uncorre-

lated to the shape parameters. As such, only J̃p(h
i
k,v

i
k) mat-

ters in the cross-covariance calculation. The cross-covariance
can be written as

Cpỹ
k,i = Cp

k,i−1E
{
J̃p(h

i
k,v

i
k)
}T

, (18)

where

E
{
J̃p(h

i
k,v

i
k)
}
=

− sin 2α cos2 α sin2 α
sin 2α sin2 α cos2 α
cos 2α sin 2α − sin 2α


·

(l1)2σh1
− (l2)

2σh2
0 0

0 2l1σh1 0
0 0 2l2σh2


(19)

with
[
α, l1, l2

]
substituted by

[
α̂i−1
k , l̂i−1

k,1 , l̂
i−1
k,2

]
.

Finally, with the standard Kalman filter update equations,
we get

p̂i
k = p̂i−1

k +Cpỹ
k,i

(
Cỹỹ

k,i

)−1(
ỹi
k − E{ỹi

k}
)
, (20)

Cp
k,i = Cp

k,i−1 −Cpỹ
k,i

(
Cỹỹ

k,i

)−1(
Cpỹ

k,i

)T
. (21)

3.2. Time Update

Since the temporal evolution of both the kinematic and shape
parameters follows a linear Markov model, the standard
Kalman filter time update formulas can be used, i.e.,

r̂0k+1 = Ar
kr̂

nk

k , (22)

Cr
k+1,0 = Ar

kC
r
k,nk

(Ar
k)

T +Cw
r , (23)

and

p̂0
k+1 = Ap

k p̂
nk

k , (24)

Cp
k+1,0 = Ap

kC
p
k,nk

(Ap
k)

T +Cw
p . (25)

4. SIMULATION

In this section, we compare the developed extended Kalman
filter with
• the Second-Order Extended Kalman Filter (SOEKF)

based on the multiplicative noise model [11], and
• the random matrix approach [4].

The elliptical object we simulated has diameters of 340m and
80m. Its starting position is at the origin and then it moves
with a constant speed of 50km/h. At each time step, mea-
surements are generated from a uniform distribution on the
object extent. The number of measurements per time step
follows a Poisson distribution with mean 5. The variances
of the measurement noise are 2000m2 and 80m2 for each
dimension. The process noise covariance for the kinematic
state is assumed as diag

(
[100, 100, 1, 1]

)
for all three esti-

mators. The multiplicative noise approaches can model the
temporal evolution of each individual shape parameter. For
this purpose, we simply use additive process noise, where the
standard deviation of the orientation noise is 0.02rad and the
semi-axes variances are 0.05m2 for both SOEKF and EKF.
The measurements, trajectory, and one exemplar run of the
estimates are depicted in Fig. 2. We can observe that the
random matrix approach adopts faster to the shape than the
other estimators in the beginning. But both the SOEKF and
EKF have a better performance when the orientation changes.
Furthermore, the EKF and SOEKF almost coincide.

For calculating the mean error, we use the Gaussian
Wasserstein distance for comparing ellipses as described in
[17]. The Gaussian Wasserstein distance incorporates both
the location and shape errors and gives a final scalar score.
The result of a Monte Carlo simulation with 1000 runs is
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Fig. 2: The measurements, trajectory, and one exemplar run of the three estimators.
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Fig. 3: Estimation errors for 1000 Monte Carlo runs.

shown in Fig. 3(a). It confirms the observation we get from
Fig. 2. This is mainly because the vanilla random matrix
approach cannot differentiate if shape changes are caused by
orientation or size changes. However, note that approximate
predictions might be derived as described in [18].

In the beginning, the EKF has a slightly higher error than
SOEKF, but less error around the third coordinate turn. Over-
all, EKF estimates nearly match the SOEKF estimates, even
though no Hessians are needed. All three approaches estimate
the velocities quite well as shown in Fig. 3(b) by means of the
Root Mean Squared Error (RMSE) for the velocities.

5. CONCLUSION

In this work, the extended object tracking problem is treated
in the standard Kalman filtering framework. For this purpose,
we developed compact formulas for an efficient closed-form
measurement update. Compared to our previous work [11],
we present progress in the following aspects:
• The kinematic state is updated using the original mea-

surement. A measurement transformation is only nec-
essary to update the shape variables.

• The calculation of Hessians is avoided by obtain-
ing the (approximate) expectation and covariance of
the pseudo-measurement directly from the covariance
matrix of the original measurement.

In the future, we will continue to explore the multiplicative
noise model and apply it to real-world data sets.
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