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ABSTRACT

Structured sparse representation has been recently found to
achieve better efficiency and robustness in exploiting the tar-
get appearance model in tracking systems with both holis-
tic and local information. Therefore, to better simultaneously
discriminate multi-targets from their background, we propose
a novel video-based multi-target tracking system that com-
bines the particle probability hypothesis density (PHD) fil-
ter with discriminative group-structured dictionary learning.
The discriminative dictionary with group structure learned by
the hierarchical K-means clustering algorithm implicitly as-
sociates the dictionary atoms with the group labels, simulta-
neously enforcing the target candidates from the same group
(class) to share the same structured sparsity pattern. Further-
more, we propose a new joint likelihood calculation by relat-
ing the discriminative sparse codes with the maximum voting
technique to enhance the particle PHD updating step. Experi-
mental results on two publicly available benchmark video se-
quences confirm the improved performance of our proposed
method over other state-of-the-art techniques in video-based
multi-target tracking.

Index Terms— Dictionary learning, group-structured
sparsity, particle PHD filter, multitask, multi-target tracking

1. INTRODUCTION

Video-based multi-target tracking has been an emerging tech-
nique in the last decade, since it is crucial in many applica-
tions such as intelligent video surveillance, behavior analysis,
assistive technology and human-computer interaction inter-
face [1]. Many researchers seek higher-level tracking systems
to locate a number of targets, retrieve their trajectories, and
recognise their identities from some video sequences. How-
ever, there still exist many challenging problems caused by
complicated environments such as the presence of noise, oc-
clusions resulting in targets having similar appearance, back-
ground clutter and illumination changes [2] [3]. In recent
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years, the random finite set (RFS) based probability hypoth-
esis density (PHD) filter originated from radar tracking has
been successfully explored in video-based multi-target track-
ing [2] [4]. This technique is a natural extension of the single-
target Bayesian framework to multi-targets, representing the
multi-target states and multi-target measurements, as well as
recursively propagating the first-order moment of the multi-
target posterior . The PHD filter based tracking scheme ef-
fectively avoids the difficulties in data association techniques
and thus provides a computationally tractable alternative [5].

Sparse representation based classification has already
achieved great success in many research areas such as com-
puter vision and visual tracking applications [6]. However, re-
cent literature shows the structured sparse representation that
incorporates the structure information in terms of both group
and multi-task level in the learning process provides improved
performance in pattern recognition and single object visual
tracking [7] [8]. Therefore, we extend this method with learn-
ing a discriminative structured dictionary to the particle PHD
filter framework so as to address the challenges in video-
based multi-target tracking. Different from previous meth-
ods, we employ the hierarchical K-means clustering method
to learn a discriminative dictionary with group structure in-
formation instead of training the reconstructive dictionaries,
since the learned discriminative dictionary has shown bet-
ter performance in tracking and some other applications [9].
The collaborative hierarchical Lasso (C-HiLasso) approach
is adopted to address this multi-task group-structured sparse
representation thereby strengthening the discriminability of
sparse coefficients at group level [10]. Based on the discrimi-
native sparse coefficients, a novel joint likelihood calculation
is proposed to further improve the particle PHD updating step
using the maximum voting technique. Experimental results
on multi-target tracking demonstrate improved performance
of our method comparing with other state-of-the-art methods.

2. PRELIMINARIES

2.1. The Particle PHD Filter

Based upon the concept of random finite set (RFS), the
PHD filter recursively propagates the first-order moment
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of the multi-target posterior. The target states and measure-
ments at time & can be denoted as X, = {x}, ..., xf’“} and
Z), = {z}, ..., 20" } respectively, where M), denotes the num-
ber of targets, and Ny is the number of measurements. The
state of a target m is X} = [Py, Dyy'ks Un'gs Vg Wi's )T
contains the image location, 2D velocity and the size of the
target [11]. The PHD prediction equation is :

D1 (Xk|Zr-1) :/[€k|k—1(€)fk\k71(le‘€) + Brjp—1(xx'18)]
X Dp_q)k—1(£)d(§) + Tk

where Y is the intensity function of the new-born target RF%,
Jrjk—1(-) is the multi-target transition density, ejp—1(&)
is the probability that the target still exists at time k and
Brjk—1(x'[€) is the intensity of the RFS that a target is
spawned from the state £&. The PHD update step is defined
as [5]:

D1 (Xe|Zi) = [IJM(Xk

Uk, (XE)
- Z K+ (Vi (X7), Prjp—1)

zL €EZy

X Ppi—1(Xp|Zr-1)

where pjy (+) is the missing detection probability, ¥y, 4, (XJ') =

(1 — pm(x7"))p(zx|x7), p(zk|x}) is the single-target
likelihood defining the probability that a measurement zj,
is generated by a target, xj is the clutter intensity, and

9) = [ f(@)g(z)dx

In our work, we adopt the sequential Monte Carlo method
to approximate the PHD filter with a set of weighted ran-
dom samples {@i_,,%i_ }=M=*N The PHD predic-
tion at time k can be represented with a set of weighted
particles including both survived targets and birth targets,
{01 i};};jM’“‘ﬁJ’“)XN where J;, denotes the expected
number of new-born targets at time k, and IV is the number
of particles for each target. Once the new set of observa-
tions is available, we can substitute the approximation of
Ppj—1(Xk|Zr—1) into (2) and the weights of each particle
are updated as

Wy, = |pu(X Z

z, €Zy,

Y,  Vrozp (Xg) Xk ~i
Wi, jo— 3
# + Cr(2r) k|lk—1 (3)

where

(Mg _1+Jg)xN

Cr(zi) = >

=1

and My, = Z(M’” 1HTR)XN i The above particle PHD fil-
ter has been used extensively in multi-target tracking [5]. In
this paper, we also employ this framework to track multiple
targets in video.

Vi 2y, (X ) W o1 )

2.2. Structured Sparse Representation

Recently, structured sparse representation has been proved to
provide better efficiency and robustness than the simple spar-
sity [9] in single object visual tracking and recognition ap-
plications, the success of which is attributed to exploiting the

block structure in sparse representation and considering prior
information in the predefined structure of the dictionary [12].
By giving a dictionary as D = [d4, ...d,,] € R™*", the input
signal y € R™ can be approximated by the linear combina-
tion with the dictionary, i.e.

y~Da=aid; +axds + - + apd, (5)

The dictionary D can be formulated as a concatenation of p
blocks that have the same length of [, D = [D[1], ..., D[p]]
where D[i] = [dy,...,d;] € R™*! specifically represents
the i-th block of the dictionary and n = ¢l. Accordingly,
the sparse coefficient vector a € R™ can be denoted as a =
[aT[1],aT[2],...,aT[p]]T, where a[i] = [a1,...,a;] € Rl is
the ¢-th block of the sparse vector. It is known that seeking
a solution for sparse code a € R™ corresponding to y is NP-
hard. The Group Lasso [10] can be considered as an efficient
way to solve the ¢5-regularized least—squares problem,

min o Ly - Dal3 + /\Z1 212 ©)
where the A is the regularization parameter. In our pro-
posed tracking scheme, we introduce within-class C-HiLasso
method [10] to enhance the differentiation between the multi-
targets and background clutter. The hierarchical K-means
clustering method is used to learn a discriminative dictionary
to acquire the in-group structured sparsity in multi-task level.

3. THE PROPOSED TRACKING ALGORITHM

3.1. Dictionary Construction with Group Structure In-
formation

Feature extraction is necessary for target appearance mod-
elling to be applied in the training and testing process. Human
features can be extracted with training data from each image
patch in the target region, including the grey-scale histogram
of oriented gradients (HOG) [13] and colour histogram. We
form the color feature vectors as a matrix F.. = [c1, ca, ..., Cyy]
€ R%*" where n denotes the total number of feature vec-
tors in the training data, and d. is the dimensionality of the
color feature. Likewise the vectorized HOG features are rep-
resented by a matrix Fj, = [hy, hy, ..., h,] € R%*" where
dy, is the dimensionality of HOG features. For simplicity, the
HOG and color features can be concatenated to a combined
feature set, F = [f}, fy, ..., f,,] € R(detdn)xn,

Different from imposing data directly to a dictionary,
we employ the unsupervised learning method - hierarchical
K-means clustering algorithm [14] to learn a discriminative
group-structured dictionary. This method allows the dictio-
nary atoms in each class to be well clustered, and results in a
large within-class similarity. For example, the same tracked
target in different image frames under different illumination
and pose conditions can be clustered into the same group
(class). Furthermore, the learned dictionary with group struc-
ture enforces the label consistency between sub-dictionaries
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and training data [8]. Consequently, the resulting discrimi-
native dictionary comprised of independent sub-dictionaries
D = [Dy,,}, Dy}, - Dy, )] € R¥" belonging to different
groups is transformed from the original feature template F',
where the group structure is defined as G = {g1, ..., g4}, and
gq 1s the sub-dictionary index. We assume that the group
structure G has ¢ groups with the same number of [ sub-
dictionary atoms in each group. We treat the particles as the
observation signals, which are randomly sampled from the
current predicted states of the multi-targets at time k. Typ-
ically, we crop the observed target region z; in the current
frame as well as extracting the human features, where the
observed target vector y € R? in this application is refined
from a particle X}, at time instant k containing the localiza-
tion. In fact, learning the representation for each particle can
be viewed as an individual task, while we exploit similari-
ties between particles and the group-structured dictionary in
a multi-task approach, which yields an observation matrix
Y = [y1,..,yn] € R¥", where the number of columns j
denotes the total number of predicted particles. This approach
renders the particle representations to be jointly sparse, and
only a few groups of atoms should be used to represent all the
corresponding particles at each frame [15].

Since the dictionary-based tracking methods suffer from
computational complexity, we adopt the well-known princi-
pal component analysis (PCA) method [16] for reducing the
dimension of our learned dictionary. The advantage of this
technique is to reduce the dictionary dimensions to be more
robust for the classification performance. Our learned dictio-
nary D € R?X" is efficiently reduced to a small-sized dic-
tionary D, € R% X" Moreover, dimensionality reduction is
also applied in the testing process, which yields a new obser-
vation matrix Y, € Rds*",

3.2. Discriminative Group-Structured Dictionary Learn-
ing for Multi-Target Tracking (DGSDL-MTT)

According to the simple structured sparsity, the sparse cod-
ing solution a; for each test target y; can be performed
separately, since different tasks are capable of choosing the
dictionary atoms independently. However, multiple test tar-
gets from the same category associated with dictionary atoms
would share the same sparsity pattern at the group level,
which can be achieved by the within-class multi-task group-
structured sparsity model [17]. The sparsity pattern is shown
in Fig.1, which is effective and suitable to perform multi-class
classification for multi-target tracking. Given by the input sig-
nals Y, € R%>" and the learned dictionary D, € R%*"
the sparse coefficients matrix A = [ay, ...,a,] € R™*" can
be accomplished by the following C-HiLasso model [10],

h
1 )
SIYs —DsA|E + A A? A i@
Jin SlYs —DsAllr + ngZGn e+ 1;::1”3’”1 7)

where A9 is the sub-matrix consisting of all the rows belong-
ing to the group ¢, and || - || # denotes the Frobenius norm. In
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Fig. 1: Tllustration of multi-task structured sparsity solution in particle rep-
resentation induced by the C-HiLasso model. The dictionary Dg consists
of sub-dictionaries for five different groups, Ds,, ..., Ds;, with five atoms
in each group. Input signals Y5 could contain different categories such as
category I and category II, and each category consists of the number of N
columns. All the signals within the same class are forced to reveal the same
group-sparsity structure A1, ..., A5 , while the within-group sparsity pattern
can be varied because of different samples in the same group.

addition, the selection of A; and A\, is dependent of the ap-
plication and data, such parameters can be obtained by cross
validation. With the employment of this sparsity solution, the
group stucture could enforce the sparse coefficients for dif-
ferent classes to deal with different subspaces, so the sparse
coefficients in our system would be further strengthened to
simultaneously discriminate the candidate targets from the
background clutter.

3.3. Joint Likelihood Calculation with Maximum Voting

In general, the nonzero sparse codes in each category are con-
centrated on the sub-matrix A¢ including all the rows belong-
ing to the group g, as depicted in Fig.1. However, when candi-
date targets are outliers and out of the dictionary, the nonzero
coefficients tend to scatter among groups instead of centraliz-
ing in some single group [6]. So then we define the following
condition with maximum voting to remove the foreigners,

0 r™me® < g, if outliers

exp~ (VXM pmaz > o
where 7 is the regularized parameter, € denotes the threshold
value, and the 7 is determined by the selected sparse codes
using average pooling. The detailed algorithm is summarized
in Algorithm 1. Furthermore, background subtraction results
containing the localization by, = [by 1, b, ] are also used to
compute another likelihood function for each candidate tar-
get.

pe (%) = ®)

. (@b (@) by
p(bk|Xk) = exp o2 ©)
where Q) = [p, ., p}, ,]" denotes the position of the targets
taken from the particle X}, and o is the standard deviation
in the observation model. The combined likelihood function
for the PHD update step can be determined by the product of
background subtraction results and the structured sparseness,

p(zk|%i) = px (Xi)p(br|X1) (10)
By feeding(10) in to (3), the updated weights of the particle
PHD filter are obtained.
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Algorithm 1: Weight Calculation by Maximum Voting

Input : Current frame at k; All h predicted particles
%! ; The matrix A € R™*" with C categories
and N columns for each category; the group
structure G = {g1, ..., gq }-

Output: Weight function p;; using maximum voting

1 Initialization: e; and e; are the vectors of all ones; the

g-th group of the sparse vector a[q] with the same

length [.

2 for each category C' do

3 Initialize the similarity ratio ry, = 0;

4 Compute the ratio ry = eijq;AgeD, 9=01,- 94

e{ Acer ) Jq

5 Maximum voting method : § = arg max(r,),
™ = max(ry);

6 for test targeti =1,..., N do

7 Calculate the selected sparse codes using

average pooling method: 1 = } 2221 a;[0];

8 Compute the weight function py by solving (8).

9 end

10 end

4. EXPERIMENTS

In this section, we evaluate both the effectiveness and strength
of our proposed tracking method via implementing it on the
video sequences from the well-known CAVIAR [18] and
PETS2009 [19] datasets. In this work, 100 particles are
employed to represent each target in the particle PHD filter
framework. The missing detection probability py; = 0.01,
survival probability e = 0.99, the new birth intensity is
T = 0.9 and the clutter intensity x = 0.01. The group
structure G has 6 groups with 5 sub-dictionary atoms in each
group. Besides, the regularization parameters for DGSDL-
MTT are \;y = 0.1, Ay = 0.01, v = 10 and 0 = 25.

Table 1: Quantitative comparison between proposed method and other
state-of-the-art methods on the CAVIAR dataset

Method Proposed PHD filter PHD-SRC MB [20]
method method [21] | method [22] method
OSPA (pixel) 25.59 48.26 34.39 33.71
AEE(pixel) 19.71 32.24 26.62 25.46

Table 2: Quantitative comparison between proposed method and other
state-of-the-art methods on the PETS2009 dataset

Method Proposed PHD filter PHD-SRC MB [20]
method method [21] method [22] method
OSPA(pixel) 19.51 32.54 24.16 23.06
AEE(pixel) 12.17 22.89 17.57 15.01

The optimal subpattern assignment (OSPA) metric [23]
and average Euclidean error (AEE) are both utilized as the
performance measure to evaluate our proposed tracking sys-
tem. Tables 1 and 2 summarize the quantitative results in both

T T T T
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— ——MBmethod
E 80 —=—Proposed method
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5 60
[
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(a) OSPA comparison in CAVIAR dataset
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(b) OSPA comparison in PETS2009 dataset

Fig. 2: Comparison in OSPA value for two video sequences between the our
method and other three methods. Subfigure (a) demonstrates the comparison
with the CAVIAR dataset and (b) is corresponding result for the PETS2009
dataset.

video sequences respectively, indicating our proposed track-
ing system effectively improves the tracking performance in
terms of the average OSPA and AEE measures in comparison
with other three state-of-the-art methods. Furthermore, the
improved accuracy can be visually seen from Fig.2, the OSPA
value of our proposed method is shown to be lower than the
baseline methods in most frames. Overall, both comparative
results demonstrate that our proposed tracker improves the
ability to eliminate the background noise and false alarms.
Besides, more recent state-of-the-art methods and available
video sequences are being applied to further evaluate the pro-
posed tracking scheme.

5. CONCLUSION

In this paper, we proposed a novel multi-target tracking
method incorporating the particle PHD filter with discrim-
inative group-structured dictionary learning. We explored
the properties of group-structured dictionary learning to im-
prove the discriminative power of sparse coding. A new joint
likelihood calculation based on the collaborative structured
sparsity was applied to overcome the challenging tracking
problems of false alarms and background clutter caused by
the noisy measurements. The results were shown to demon-
strate the proposed method performs significantly better than
the baseline methods. Future work will integrate an online
approach to update our group-structured dictionary, this up-
dated dictionary will be dealing with the appearance changes
of the target in order to further improve the accuracy.
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