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ABSTRACT

This paper considers the problem of estimating an unknown high di-
mensional signal from (typically low-dimensional) noisy linear mea-
surements, where the desired unknown signal is assumed to pos-
sess a group-sparse structure, i.e. given a (pre-defined) partition
of its entries into groups, only a small number of such groups are
non-zero. Assuming the unknown group-sparse signal is generated
according to a certain statistical model, we provide guarantees un-
der which it can be efficiently estimated via solving the well-known
group Lasso problem. In particular, we demonstrate that the set of
indices for non-zero groups of the signal (called the group-level sup-
port of the signal) can be exactly recovered by solving the proposed
group Lasso problem provided that its constituent non-zero groups
are small in number and possess enough energy. Our guarantees rely
on the well-conditioning of measurement matrix, which is expressed
in terms of the block coherence parameter and can be efficiently
computed. Our results are non-asymptotic in nature and therefore
applicable to practical scenarios.

Index Terms— Group sparsity, structured support recovery,
group Lasso, primal-dual witness.

1. INTRODUCTION

In recent years, the recovery of structured signals from a small num-
ber of linear measurements as compared to their ambient dimen-
sion has been a mainstay of research in the field of signal process-
ing, high-dimensional statistics, and machine learning [1–4]. In this
work we focus on the recovery of a group-sparse structured signal
β∗ ∈ Rp observed according to the model

y = Xβ∗ +w, (1)

where X ∈ Rn×p (with n < p) is the measurement matrix (also
called the dictionary) and w ∈ Rp is the noise vector. We assume
that the signal vector β∗ ∈ Rp is group-sparse structured with G
groups defined as

β∗ =
[
(β∗I1)T (β∗I2)T · · · (β∗IG)T

]T
, (2)

where β∗Ig ∈ Rdg and Ig denote the gth group of β∗ and its corre-
sponding subset of indices, respectively. A group-sparse structured
vector β∗ with respect to (2) has only a few non-zero groups. Such
structure naturally arises in many applications including structural
health monitoring [5], bio-medical imaging [6], multi-task compres-
sive sensing [7], multi-task learning [8], among many others. We
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focus on recovery guarantees of group-sparse signal using the fol-
lowing group Lasso based estimation problem

β̂ = arg min
β∈Rp

1

2
||y −Xβ||22 +

G∑
g=1

λg||βIg ||2, (3)

where λg > 0 is the regularization constant for the gth group.

1.1. Related works

Several works have studied the recovery of group-sparse structured
signals. The studies that provide statistical guarantees for the group
Lasso problem (3) when the measurements are generated according
to (1), are quite diverse in terms of their statistical signal generation
assumptions and their requirements for successful recovery. In terms
of the statistical model assumptions, a large body of work is focused
on the case where the measurement matrixX is generated according
to a Gaussian distribution [9, 10]. These results cannot be applied to
many practical scenarios where the measurement matrix is not ran-
dom but structured. Another line of work studies the asymptotic
behavior of this recovery procedure when the number of measure-
ments and unknown parameters can grow infinitely [11–13]. Since
in many practical applications the dimensions remain finite, the util-
ity of such asymptotic results may be limited. In terms of the stud-
ied requirements for successful recovery, various conditions are pro-
posed so far: the group RIP condition of [14] and the restricted group
eigenvalue condition of [3, 15] are among the most popular. Since
verifying such conditions for structured measurement matrices can
be computationally prohibitive, we do not base our analysis on those
requirements and instead use the concept of block coherence which
is always computable in polynomial time. Finally, we note that a re-
cent effort [16] has analyzed group-sparse estimation methods using
measurement matrices similar to what we consider here. However,
the focus of that work is on providing regression error guarantees,
instead of support recovery guarantees, which comprise our primary
focus here.

1.2. Our Contributions

Our main contribution here is that we provide the conditions on the
number of non-zero groups in β∗ as well as the strength of cor-
responding coefficient vectors so that the group Lasso framework
in (3) can successfully recover the groups under the measurement
model (1). Our theoretical analysis is based on the primal-dual wit-
ness construction approach used in [17] and uses a generalization of
that work to the case where there is a predefined grouping over the
unknown coefficients.

The paper provides the proof of the main theorem. However, the
useful lemmata are stated without proof; detailed proofs appear in a
full-length manuscript, which is in preparation [18].
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1.3. Organization

After quick overview of notation used throughout the paper, in Sec-
tion 2 we present our main theoretical result on group-level support
recovery guarantees along with the required assumptions. In Section
3, we provide a proof sketch of the main result. Finally, we provide
a few brief conclusions in Section 4.

1.4. Notation

For any integer n, [n] = {1, 2, · · · , n}. The maximum of two num-
bers a, b is denoted as a ∨ b = max{a, b}. Vectors and matrices are
denoted by bold-face lowercase and uppercase, respectively. Given
a vector x, ‖x‖p denotes its standard `p norm. For a given ma-
trix X: ‖X‖2→2, ‖X‖F , ‖X‖1, and ‖X‖∞ denote the spectral
norm, Frobenius norm, sum of absolute values of the entries, and the
maximum absolute value of entries, respectively. For a column-wise
block partitioned matrix X = [XI1 XI2 · · ·XIG ] the inter-block
coherence constant µB(X) is defined as

µB(X) := max
1≤i 6=j≤G

‖XH
IiXIj‖2→2, (4)

and the intra-block coherence parameter µI(X) is defined as

µI(X) := max
g∈[G]

‖XH
IgXIg − Idg×dg‖2→2. (5)

If p denotes the length of β and the number of columns of X , then
for the index set Ig ⊂ [p], βIg will denote the group of entries of
β whose indices belong to this set andXIg will denote the columns
of X indexed by Ig . Throughout the paper, we will use different
notions of support defined as in following:

• G(β) := {g ∈ [G] : βIg 6= 0} will denote the set that
contains the indices of the nonzero groups of β, where G is
the total number of groups.

• SG(β) := ∪g∈G(β)Ig . In words, SG(β) will denote the set
that contains all indices comprising groups that are nonzero.

Moreover, we let dmin := ming∈[G] dg and dmax := maxg∈[G] dg
denote the minimum and maximum group sizes, respectively, and
dG(β) :=

∑
g∈G(β) dg be the total number of entries in the group-

level support G(β) of β. In order to not overly complicate the nota-
tion, we will always use G∗, S∗G , and d∗G as abbreviations for G(β∗),
SG(β∗), and dG(β∗), respectively.

2. RECOVERY GUARANTEES

The recovery guarantees presented in this paper are under specific
statistical data model assumptions. We assume that the group-sparse
vector β∗ ∈ Rp with groups as defined in (2) is randomly generated
as described below:

1. The group-level support of β∗, which we denote by G∗ ⊆
[G], comprises s non-zero blocks whose indices are selected
uniformly at random from all subsets of [G] of size s.

2. The non-zero entries of β∗ are equally likely to be positive or
negative: E sign(β∗j ) = 0 for j ∈ [p].

3. The non-zero blocks of β∗ have statistically independent “di-
rections.” Specifically, it is assumed that

Pr

{ ⋂
g∈G∗

β∗Ig
‖β∗Ig‖2

∈ Ag

}
=
∏
g∈G∗

Pr

{
β∗Ig
‖β∗Ig‖2

∈ Ag

}
,

where each Ag is any subset of the unit sphere in Rdg .

Under the above statistical model assumptions the main theoretical
result of the paper can be stated as follows.

Theorem 2.1. Given the noisy linear measurement model (1) where
β∗ is generated according to the statistical assumptions listed above
andw ∼ N (0, σ2In×n) assume that

A1 : µI(X) ≤ c0 and µB(X) ≤
√

dmin
d2max

c1
log p

,

A2 : |G∗| ≤ min

{
c2 G

‖X‖22→2 log p
, dmin
d2max

c3 µ
−2
B

(X)

log p

}
,

A3 : ‖β∗Ig‖2 ≥ 10σ(1 + ε)
(√

dG∗ +
√
dg
)(

1 ∨
√

s
dmax log p

)
for every g ∈ G∗,

all hold for some non-negative constants c0, c1 ≤ 0.004, c2 ≤
1
14

( 1
4
− 3 c0 − 48 c1), c3 = min{c2, 0.0004}, and some

ε ≥
√

(1 + µI(X)) log(pG)

dmin
. (6)

Then, with probability at least 1− 14 p−2 log 2, the solution β̂ of the
problem (3), with λg = 4σ(1 + ε)

√
dg for every g ∈ [G], is unique

with the same group-level support as β∗, i.e. G(β∗) = G(β̂), and
satisfies the error bound∥∥∥β̂Ig − β∗Ig∥∥∥

2
≤ 5σ(1 + ε)

(√
dg +

√
dG∗
)
, (7)

for every g ∈ G(β∗).

Here, we note on several aspects of the main theorem, which turn
it into a practically appealing result. First, notice that the support re-
covery guarantee relies on the well-conditioning of the dictionaryX
as required by assumption A1. We measure the well-conditioning of
the dictionary in terms of its block coherence constant µB(X). For-
tunately, µB(X) can be computed in polynomial time for a given
column-wise partitioned dictionary (unlike other quantities such as
restricted isometry constant, which are widely used in proving simi-
lar recovery guarantees but can be NP-hard to compute [19]).

The second condition A2 specifies the requirement on the max-
imum number of allowable non-zero groups in the group-level
support of β∗ that can be recovered. Unlike some earlier coherence-
based recovery results for group-sparse structured signals [20],
which verify pessimistic bounds on the number of recoverable
groups, the condition provided here is stronger in the sense that it al-
lows for a linear scaling between the number of non-zero groups |G∗|
and the total number of measurements n. Moreover the block coher-
ence parameter appears in the upper-bound in the form of µ−2

B (X),
which is a significant improvement over similar results, e.g. in [20],
that require |G∗| be bounded by functions of µ−1

B (X). We bring
an example here to make this argument more clear. Assume the
dictionary X is the concatenation of two orthonormal bases, i.e.
X :=

[
X(1)

∣∣X(2)

]
∈ Rn×2n, where X(1) ∈ Rn×n is the discrete

cosine transform (DCT) matrix and X(2) ∈ Rn×n is the identity
matrix. The authors leveraged this widely-studied dictionary in the
context of structural anomaly detection using propagating wave-field
measurements [21], where X(2) was column-wise partitioned into
groups of size dg = d and X(1) was divided into singleton groups
of size dg = 1. For such X with the specified partition, it can be
shown that µB(X) ≤

√
4d/n, µI(X) = 0, ‖X‖22→2 = 2, and

G = n (1 + 1/d). Substituting these in A2, it can be shown [18]
that for |G∗| ≤ c (n/(d3 · logn)), successful support recovery can
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be guaranteed, where c > 0 is a universal constant. However, if the
bound on |G∗| were in terms of µ−1

B (X), then successful recovery
would have been possible only for |G∗| = O(

√
n).

The third assumptionA3 is on the energy of the non-zero groups,
which requires their Euclidean norms to be above a certain threshold
depending on the noise variance σ.

3. PROOF SKETCH

Our analysis uses a basic result for characterizing the optimal solu-
tions of the group Lasso problem (3). We state the result as a lemma;
its proof follows what are, by now, fairly standard methods in convex
analysis so we omit it here [12, 22].

Lemma 3.1. A vector β̂ solves problem (3) if and only if

XT
IgX(β̂ − β∗)−XT

Igw + λgẑIg = 0, ∀ g ∈ [G] (8)

holds for some vector ẑ, whose elements satisfy

ẑIg =
β̂Ig
‖β̂Ig ‖2

, if β̂Ig 6= 0

‖ẑIg‖2 ≤ 1, otherwise
. (9)

If ‖ẑIg‖2 < 1 for all g /∈ G(β̂) then any optimal solution β̂ to
(3) satisfies β̂Ig = 0 for all g /∈ G(β̂); if in addition, the matrix
XT
SG(β̂)

XSG(β̂) is invertible, then β̂ is the unique solution to (3).

The optimality condition (8) can be written in matrix form, as

XTX(β̂ − β∗)−XTw + Λ ẑ = 0, (10)

where Λ is the p × p diagonal matrix whose j-th diagonal entry is
Λj,j = λg(j), where g(j) = {g ∈ [G] : j ∈ Ig}.

Our proof follows the so-called Primal-Dual Witness (PDW)
technique utilized in [17] for the analysis of the Lasso problem and
also in [9, 12] for the analysis of the group Lasso problem arising in
the context of multivariate regression with Gaussian-distributedX .

To construct the primal-dual certificate pair (β̌, ž), we first iden-
tify the solution of a restricted group Lasso problem over the true
group-level support G∗. Specifically, we construct β̌S∗G ∈ RdG∗ as

β̌S∗G = arg min
βS∗G
∈RdG∗

1

2
||y−XS∗GβS∗G ||

2
2+
∑
g∈G∗

λg‖βIg‖2. (11)

Second, we choose the restricted dual vector žS∗G ∈ RdG∗ such that
the primal-dual pair (β̌S∗G , žS

∗
G

) satisfies the following optimality
condition of the restricted problem:

XT
S∗G
XS∗G (β̌S∗G − β

∗
S∗G

)−XT
S∗G
w + ΛS∗G žS

∗
G

= 0, (12)

where ΛS∗G denotes the sub-matrix of Λ obtained by sampling rows
and columns at the locations in S∗G ; and also žS∗G satisfies the sub-
gradient condition (9). Using Lemma 3.2 we can argue that under
our statistical data model assumptions, in addition to the assump-
tions A1 and A2, the matrix XS∗G is full column-rank, with high
probability, which implies that β̌S∗G is the unique solution to (12)
given by

β∗S∗G − β̌S∗G = (XT
S∗G
XS∗G )−1(ΛS∗G žS

∗
G
−XT

S∗G
w). (13)

Next, we set the “off group-level support” primal variable β̌(S∗G)
c ∈

Rn−d
∗
G to be zero and solve for an off group-level support dual vari-

able ž(S∗G)c ∈ Rn−d
∗
G such that the optimality conditions for the full

(unrestricted) group Lasso problem are satisfied. Using the result of
Lemma 3.1, this translates to the following condition:

XT
(S∗G)

cXS∗G (β̌S∗G−β
∗
S∗G

)−XT
(S∗G)

cw+Λ(S∗G)
c ž(S∗G)c = 0, (14)

where Λ(S∗G)
c denotes the sub-matrix of Λ obtained by sampling

rows and columns at the locations in (S∗G)c. Using (14) along with
(13), it is straightforward to show that for each g /∈ G∗, the corre-
sponding block žIg of the dual vector can be expressed as

žIg =
1

λg
XT
Ig

[
XS∗G (β∗S∗G − β̌S∗G ) +w

]
=

1

λg
XT
Ig

[
XS∗G (XT

S∗G
XS∗G )−1ΛS∗G žS

∗
G

+ Π(S∗G)
⊥(w)

]
,

where Π(S∗G)
⊥(w) := (I −XS∗G (XT

S∗G
XS∗G )−1XT

S∗G
)w.

In order to ensure the off group-level support primal vector
β̌(S∗G)

c is zero, we impose that ‖žIg‖2 < 1 for every g /∈ G∗, which
is known as the “strict dual feasibility” condition [17]. As a result of
this condition, no “spurious” nonzero groups will be present in the
support of β̌. Notice that by the triangle inequality we will have that
for any g /∈ G∗∥∥žIg∥∥2 ≤ ∥∥∥∥ 1

λg
XT
IgXS∗G (XT

S∗G
XS∗G )−1ΛS∗G žS

∗
G

∥∥∥∥
2

+

∥∥∥∥ 1

λg
XT
IgΠ(S∗G)

⊥(w)

∥∥∥∥
2

. (15)

Next, we bound the first term on the right-hand side using our statis-
tical assumptions, i.e. that the “directions” β∗Ig/‖β

∗
Ig‖2 associated

with each nonzero block of β∗ are random, and statistically indepen-
dent. To do this, we need to express the elements of the vector žS∗G
(or more specifically, its individual blocks) in terms of the direction
vectors associated with the corresponding nonzero blocks of the true
vector β∗S∗G . In fact, it can be shown that we can write

žS∗G = β̃∗S∗G + uS∗G ,

where β̃∗S∗G is obtained by concatenating the direction vectors
β∗Ig/‖β

∗
Ig‖2 for all g ∈ G∗ and uS∗G is a perturbation vector,

whose norm can be controlled using a similar argument as in the
proof of Lemma 3 in [9]. Equipped with this decomposition of žS∗G
and applying triangle inequality in (15) for each g /∈ G∗ we have

‖žIg‖2 ≤ 1

λg

∥∥∥XT
IgXS∗G (XT

S∗G
XS∗G )−1ΛS∗G β̃

∗
S∗G

∥∥∥
2

+
1

λg

∥∥∥XT
IgXS∗G (XT

S∗G
XS∗G )−1ΛS∗GuS

∗
G

∥∥∥
2

+
1

λg

∥∥∥XT
IgΠ(S∗G)

⊥(w)
∥∥∥
2
. (16)

Using the Lemmata 3.3, 3.4, and 3.5 on the following page, we can
argue that, with high probability, the right-hand side of the above
inequality (16) is strictly less than 1 as long as the conditions of the
main Theorem 2.1 are met. This will ensure G(β̌) ⊆ G∗.

Further, if the following condition holds true

‖β∗Ig − β̌Ig‖2 < ‖β
∗
Ig‖2 for all g ∈ G∗, (17)
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then it follows, (essentially, by the triangle inequality) that β̌Ig 6=
0, whenever β∗Ig 6= 0, which is equivalent to G∗ ⊆ G(β̌). Us-
ing assumption A3 in the main theorem, and in addition assuming
‖XT
S∗G
XS∗G − Id∗G×d∗G‖2→2 ≤ 1

2
which in turn implies (along with

(13)) that for each g ∈ G∗ we have

‖β̌Ig − β
∗
Ig‖2 ≤ ‖X

T
Igw‖2 + λg + ‖XT

S∗G
w‖2 + ‖λG∗‖2, (18)

guarantees (17) is true.
Therefore, having established ‖žIg‖2 < 1 for every g /∈ G∗ in

addition to a guarantee of the form (17) will ensure that G(β̌) = G∗.
Finally, by using the Hanson-Wright inequality [23] together with
the choice λg = 4σ(1 + ε)

√
dg for every g ∈ [G], we can prove the

estimation error bound (7) stated by the Theorem.
So far we have shown recovery gaurantees under a series of as-

sumptions we argued hold with high probability. These assumptions
are listed as events E1 to E4 given below:

E1 :=

{
‖XT
S∗G
XS∗G − Id∗G×d∗G‖2→2 ≤

1

2

}
E2 :=

{∥∥∥XT
IgXS∗G (XT

S∗G
XS∗G )−1ΛS∗G β̃

∗
S∗G

∥∥∥
2
≤ λg

4
, ∀g /∈ G∗

}
E3 :=

{∥∥∥XT
IgXS∗G (XT

S∗G
XS∗G )−1ΛS∗GuS

∗
G

∥∥∥
2
≤ λg

4
, ∀g /∈ G∗

}
E4 :=

{
‖XT
IgΠ(S∗G)

⊥(w)‖2 ≤
λg
4
, ∀g /∈ G∗

}
Finally, let E denote the event that the group-level support G∗ is
exactly recovered and the estimation error bound holds. The event
E happens when the eventE1 is true and conditioned on that, events
E2, E3, E4 also occur. Based on this argument and by using the
union bound, the probability of Ec can be upper bounded as

Pr(Ec) ≤ Pr(Ec1) + Pr (Ec2|E1) + Pr (Ec3|E1) + Pr (Ec4|E1) .

The rest of the proof briefly reviews conditions under which the
probability terms on the right-hand side of the above inequality are
bounded. First, by Lemma 3.2 we know that whenever µI(X) ≤ c0,
µB(X) ≤ c1

log p
, and (19) hold, then Pr(Ec1) ≤ 2p−4 log 2. Sec-

ond, utilizing Lemma 3.3 implies Pr (Ec2|E1) ≤ 4p−4 log 2 under
the stated conditions of this Lemma. Third, Lemma 3.4, with λg =
4σ(1 + ε)

√
dg , implies that as long as ε meets the condition in (6)

and ‖β∗Ig‖2 satisfies A3 for every g ∈ G∗, then Pr (Ec4|E1) ≤
6 p−2 log 2. Finally, by Lemma 3.5, we have that Pr (Ec5|E1) ≤
2p−4 log 2 whenever λg = 4σ(1+ε)

√
dg for all g /∈ G∗ . Therefore,

under stated conditions of the theorem we have

Pr(Ec) ≤ 8p−4 log 2 + 6p−2 log 2 ≤ 14 p−2 log 2.

3.1. Useful Lemmata

Throughout the proof, we were proceeding under the assumption
thatXT

S∗G
XS∗G is invertible. This condition is established here:

Lemma 3.2 (Theorem 1 of [16]). Suppose the dictionaryX satisfies
µI(X) ≤ c0 and µB(X) ≤ c1/log p, for some universal positive
constants c0 and c1. Assume further that G∗ is a subset of size |G∗| of
the set [G] = {1, 2, · · · , G}, which is drawn uniformly at random.
Then, as long as

s ≤ min

{
c2G

‖X‖22→2 log p
,

c3
µ2
B(X) log p

}
(19)

for positive constants c2 and c3 that only depend on c0 and c1, it
holds that

∥∥∥XT
S∗G
XS∗G − Id∗G×d∗G

∥∥∥
2→2

≤ 1
2
, with probability at

least 1− 2p−4 log 2 with respect to the random choice of G∗.

The above lemma is essentially identical to Theorem 1 of
[16], with the difference that in (19) we used µB(X) instead of
µB(X), where the latter is called quadratic-mean block coher-
ence in [16]. This yields a slightly more restrictive condition as
µB(X) ≥ µB(X).

The Lemmata 3.3, 3.4, and 3.5 establish the boundedness of each
of the three terms in (16), with high probability, as long as the con-
ditions of the main Theorem 2.1 are met.

Lemma 3.3. Suppose the group-level support G∗ is given such that
the event E1 holds true. Moreover, let µB(X) ≤

√
dmin
d2max

· c1
log p

,

and s ≤ dmin
d2max

c3
µ2
B
(X)·log p . Then assuming β∗S∗G is a random vector

generated according to our statistical model, we will have that

Pr

 ⋃
g/∈G∗

∥∥∥XT
IgXS∗G (XT

S∗G
XS∗G )−1ΛS∗G β̃

∗
S∗G

∥∥∥
2
>
λg
4

 ≤ η
holds for η = 4p−4 log 2.

The above lemma is a consequence of our statistical model as-
sumptions together with Hoeffding’s inequality; whereas the proofs
of the following two lemmata rely on the Hanson-Wright inequality.

Lemma 3.4. Suppose the group-level support G∗ is given such that
the event E1 holds. Moreover, assume µB(X) ≤

√
dmin
d2max

· c1
log p

,

s ≤ dmin
d2max

c3
µ2
B
(X)·log p , w ∼ N (0, σ2In×n), and that the condition

A3 of the main theorem is met, then

Pr

 ⋃
g/∈G∗

∥∥∥XT
IgXS∗G (XT

S∗G
XS∗G )−1ΛS∗GuS

∗
G

∥∥∥
2
>
λg
4

 ≤ η
holds for η = 6 p−2 log 2.

Lemma 3.5. Suppose the group-level support G∗ is given such that
event E1 holds true. Moreover, let w ∼ N (0, σ2In×n). Then the
following holds for ε satisfying (6) and λg = 4σ(1 + ε)

√
dg,

Pr

 ⋃
g/∈G∗

∥∥∥XT
IgΠ(S∗G)

⊥(w)
∥∥∥
2
>
λg
4

 ≤ 2 p−4 log 2.

4. CONCLUSION

In this paper, we consider the recovery of group-sparse signals from
low-dimensional noisy linear measurements using the group Lasso
estimation procedure. We establish practically appealing group-level
support recovery guarantees for non-asymptotic regimes in terms of
the efficiently computable block coherence parameter.
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