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ABSTRACT

In this paper, we propose a new method for the recovery of a
sparse signal from few linear measurements using a reference
signal as side information. Modeling the signal coefficients
with a double Laplace mixture model, and assuming that the
distribution of the components of the prior information differs
slightly from the unknown signal, the problem is formulated
as a weighted /; minimization problem.

We derive sufficient conditions for perfect recovery and
we show that our method is able to reduce significantly the
number of measurements required for reconstruction. Nu-
merical experiments demonstrate that the proposed approach
outperforms the best algorithms for compressed sensing with
prior information and is robust in imperfect scenarios.

Index Terms— Compressed sensing, mixture models,
side information, sparse recovery, weighted ¢; minimization.

1. INTRODUCTION

The theory of compressed sensing (CS) has proved that a k-
sparse signal z* € R”™ (i.e., it has at most £ << n nonzero
entries) can be recovered from a small collection of linear
measurements y = Az* € R™ (m << n) via the constrained
¢1 minimization, that consists in selecting the element which
is compatible with the observations which has minimal ¢;-
norm.

In this paper, we consider the problem of compressed
sensing with side information as addressed in [1]. More pre-
cisely, we are interested in recovering the high dimensional
signal * from y, with the additional information that z* is
similar to a reference signal w. This problem arises in several
situations, as in compressive image sampling [2, 3], where
the spatial and temporal correlation within image/video is ex-
ploited. Also in sensor/camera networks [4, 5, 6], the signals
acquired by close sensors are similar and can be used as prior
information to reduce the number of measurements needed
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for reconstruction. We refer to [1] for an overview of the
applications.

In [1], the authors propose to solve the following opti-
mization problem

i - Posty=A 1
fgﬁ{i [zll1 +~llz w”p s.t.y T (1)

with p € {1,2} and v > 0, referred as ¢;-¢; minimiza-
tion, and ¢;-¢ minimization, respectively. Moreover, suffi-
cient conditions on the number of measurements for perfect
reconstruction are derived. In particular, it is shown that the
number of measurements required by ¢;-¢; minimization is
much smaller than that obtained using classical CS.

The use of prior information as a tool to reduce the num-
ber of measurements required for signal reconstruction has
appeared in CS literature [1, 7, 8] also with different assump-
tions. In [7], the authors employ as prior information an es-
timate 1" of the support of z* and propose a truncated /-
minimization problem, i.e. the minimization of

min ||zre|; sty = Ax*. (2)

It should be noticed that (2) can be adapted to our problem
using T' = supp(w) (Mod-CS, [7]). Another piece of litera-
ture [8, 9] considers a weighted /1 -minimization with weights
w; = —logp; where p; is the probability that x; = 0. It
should be remarked that in our setting p; is not available.

In this paper, we propose a new weighted ¢; minimiza-
tion, which we call 2LMM-CS. The fundamental idea is to
use a good generative model for sparse and compressible vec-
tors [10]. For this purpose, we use a Laplace mixture model
(2LMM) as the parametric representation of the prior distri-
bution of the signal coefficients. Because of the partial sym-
metry of the signal sparsity, we know that each coefficient
should have one out of only two distributions: a Laplace with
small variance with high probability and a Laplace with large
variance with low probability. This model has been shown ef-
fective to represent sparse signals or compressible signals in
[11]. Then, we cast the estimation problem as a non convex
optimization problem that incorporates the parametric rep-
resentation of the signal. However, the optimization prob-
lem turns out to be computationally hard. Assuming that
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the distribution of the nonzero coefficients is similar to that
of unknown signal, the estimation problem is simplified to a
weighted /1 -minimization.

We show that under certain conditions the number of
measurements required for reconstruction can be signifi-
cantly reduced compared to the techniques used in literature
before. Finally, numerical experiments show that 2LMM-
CS achieves excellent performance in several situations and
outperforms the state of the art on this subject.

2. SUPPORT DETECTION AND SPARSE SIGNAL
ESTIMATION VIA 2-LMM

2.1. Modeling sparse or compressible vectors

We consider a two-state mixture model as a prior that de-
scribes our knowledge about the sparsity of the signal x*.
Because of the partial symmetry of the signal sparsity, we
consider the case in which x is a random variable of the form

;= ziw; + (1 — z)v; 1 € [n]

where u; are identically and independently distributed (i.i.d.)
according to Laplace(0, o), v; are i.i.d. as Laplace(0, 5) and
z; are i.i.d. Bernoulli random variables with probability mass
function f(z; = 1) =1—p, withp = K/n < 1/2, a = 0,
B >> 0, and K > k is an estimate of the signal sparsity,
in order to ensure that we have few large coefficients. This
mixture model is completely described by three parameters:
the sparsity ratio p < 1/2 (or K, equivalently), « that is
expected to be small and § > « if the signal is sparse. It
should be noticed that vectors generated from this distribution
are typically compressible, according to definition [10].

2.2. Estimation using 2-LMM generative model

Let © = («, 3) and consider the logarithm of the conditional
distribution: L(x; ©) := log[f(z|y; ©)]

Proposition 1. Given y, A, ©,

+oo ify # Ax
where
J(z,7;©) |:7T'L‘l'7, + miloga — m; log(1 — p)
=1
(1 )|$1| +(1_7ri)10g6_(1_7ri)10gp 7
C))]

T = mi(x) = Elzi|2;0] = f(z; = 1|2;0) and H is the
natural entropy function.

The proof is obtained as a simple consequence of Jensen’s
inequality and using the logarithm properties.

Corollary 1. The following optimization problems are equiv-
alent

max L(x;0) 4)

n

ZH(m) st. Az =y (6)

=1

min min J(x,m;0) —
z€R™ TeR™

Given y, A, we consider the following modified optimiza-
tion problem:

n

> H(m) st.Az=y (7)

i=1

min min J(z,m;0) —
z€ER™ TEX, K

that introduces the constraint 7 € X,,_ g, which allows to
take into account that we seek a sparse solution with a guess
of the sparsity level K. It should be noted that there is not a
closed form solution to problem (7). However, partial mini-
mization of function in (7) with respect to 7 leads to the fol-
lowing expression.

Lemma 1. Let

n

7 = 7(z,0) = argmin J(z,m0) — > H(m)

TEXn K i=1

~ 1
= on i - ®)
1 e (573)

Iz = vll2

is a thresholding operator which acts on v by keeping the j
biggest elements in absolute value and setting the others to
zero.

then

where

oj(v) = min ‘
{z€R™: |supp(2)|<j}

3. COMPRESSED SENSING WITH PRIOR
INFORMATION VIA 2LMM

Let us consider the optimization problem in (7) and suppose
« and 3 are fixed and 0 =~ a < . Assuming that the distri-
bution of the signal coefficients of w is similar to that of z*,
we fix

m = mi(w) = f(

zi = llw,a, 8) =

and T(w) = 0, g (m(w)). Let T® = supp(7) and T = {i €
[n] : 7 =0} Wehave7r; = m;, Vi € Tand 7; = 0,Vi € T.

It should be noticed that, given «, 3, 7, minimization of
(7) over x is equivalent to computation of

;Ielgi Zw\xﬂ + Z (m + (

€T i€Te

1 —m)w) |24, (10)

s.t. Az = y withw = «/f.
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Definition 1. Let A C {1...,n}with|A| =k < K, w €
0,1, 7 € [0,1)", and T = {i € [n] : [op_k(7)]; = 0}. A
matrix A € R™*™ is said to satisfy the non-uniform weighted
(w,m, K, A)-NSP if for any h € Ker(A) \ {0}, we have

wllhalls + (1 =w) Y milhil < > (mi+ (1 — m)w) il
€S i€EAC
where S = (ANTC)U (A°NT).

Definition 1 is non-uniform and depends on a fixed set A.
As will be clear in next results, this condition is necessary
and sufficient for the recovery of a sparse vector supported on
A using (10). The following definition, instead, considers a
weighted uniform null space property, which is a necessary
and sufficient condition for the recovery of all k-sparse vec-
tors from compressive measurements via (10).

Definition 2. Ler w € [0,1] and © € [0,1]™. A marrix
A € R™ ™ s said to satisfy the weighted (w,m, K)-Null
Space Property (NSP) of order k if it satisfies the non-uniform
weighted (w, m, K, A)-Null Space Property (NSP) for all A C
[n] with |A| < k.

Theorem 1. The weighted (1-minimization in (10) uniquely
recovers every k-sparse vector x* from measurements y =
Ax* if and only if A satisfies the (w, m, K)-NSP of order k.

Theorem 2. Letr A C [n] with |A| < k < K, w € [0,1],
m € [0,1]", and T = {i € [n] : [op—k(7)]; = 0} and
A € R™*"™ be a matrix whose entries are i.i.d. Gaussian
random variables with zero-mean and unit variance. Then A
satisfies non-uniform weighted (w, 7, K, A)-NSP with proba-
bility greater than 1 — ¢ if the following condition holds

> Vk+|S| —|—cl1/ /k:) +vV2lne?

\/7

+02\J |:(1—w)227ri2+w2k+ Z 2mw(1—w):| In (%)

i€S i€ ANTC

an

where S = (ANT®) U (A°NT) and c1,co are constants
independent of k,n,|S|, and é.

The proof is obtained by modifying analogous proofs for
NSP for Gaussian matrices provided in [12, 13].

Corollary 2. Let A C [n] with |A] < k, w € [0,1], 7 €
0,1]", T = {i € [n] : [on—k(7)]; = 0} and A € R™*"
be a matrix whose entries are i.i.d. Gaussian random vari-
ables with zero-mean and unit variance. The weighted (-
minimization in (10) uniquely recovers x* supported on A
with |A] < k < K from measurements y = Ax* if it holds
condition (11).

The following corollary shows that in the large system
limit, as n is large enough and for a sufficiently small o ~ 0

and the prior information has good enough quality, then the
number of measurements sufficient for perfect reconstruction
of a sparse vector supported on A with |A| < k can be signif-
icantly reduced.

Corollary 3. Ler o = 0, k < K, 7 = w(w) as defined in (9)
and A € R™*™ be a matrix whose entries are i.i.d. Gaussian
random variables with zero-mean and unit variance. If ||w —
o*|| < §minsep |@f| then the weighted (1-minimization in
(10) uniquely recovers x* from measurements y = Ax* if it
holds condition

1
m>K+0 ((K — k)l " %elr(w)xl(l/a 5 (en/k))

where r(w) the non increasing rearrangement of w, i.e.
r(w) = (|wiy,...,w;,|) with lw;, > w;,, | for all £ =
1,...,n—1.

It should be noticed if |r(w) x| # 0, being o = 0 the sec-
ond term is very small, suggesting that just X measurements
are sufficient for recovery.

4. NUMERICAL EXPERIMENTS

We compare 2LMM-CS with classical CS and the best al-
gorithms for CS with side information known in literature:
Mod-CS, ¢1-¢1 and ¢;-¢> minimization (see the Sec. I for an
overview of these methods).

As a first experiment, we employ the same setting ana-
lyzed in [1]. A signal z* of length n = 1000 is generated
with sparsity k£ = 70. The nonzero elements of z* are drawn
from a standard Gaussian distribution. The prior information
w is obtained w = a* + z, where z is a 28-sparse signal,
whose nonzero elements are drawn from a Gaussian distribu-
tion with standard deviation 0.8. The vector z is such that
|[supp(z) N supp(z*)| = 22 and |supp(z) N supp(z*)¢| = 6.
The resulting vector w differs significantly from the true vec-
tor z* and the relative distance is || z* — w/||2/||z*]|2 = 0.502.
The sensing matrix A with m rows and n columns is sampled
from the Gaussian ensemble with zero mean and variance
1/m. In ¢;-¢; and ¢1-¢5 minimization v = 1, as employed
in [1]. For CS-2LMM the mixture parameters have been set
as follows: o = 1074, 8 = 10, K = [supp(w)| = 76. In-
stead Mod-CS uses as prior information 7' = supp(w). Fig.
1 shows the empirical recovery success rate, averaged over 50
experiments, as a function of the number of measurements m.
For a fixed m, we mean the success when a given algorithm
reconstructs the signal z* with a relative error smaller than
10~2. Tt should be noticed that ¢;-¢; minimization achieves
the best performance, if compared with CS, Mod-CS and ¢; -
{5 minimization. It requires m > 140 measurements to re-
cover perfectly the signal with a probability larger than 0.95.
It should be appreciated that 2LMM-CS reduces this number
to 80.
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Fig. 1. Empirical probability of reconstruction of classical CS
(BP), ¢1-¢1 minimization, ¢;-f> minimization, and 2LMM-
CS.

We now investigate the performance of the algorithms in
imperfect scenarios. We consider signal z* and z generated
as in the previous experiment. The prior information w is
obtained by w = z* 4+ z + 7, where 7 is a gaussian noise
with standard deviation 1073, The resulting relative error
is |lw — z||/||=]| = 0.6489. The sensing matrix A is sam-
pled from the Gaussian ensemble with zero mean and vari-
ance 1/m. Mod-CS uses as prior information the set 7" of the
123 largest components in absolute value of vector w. For
CS-2LMM the mixture parameters have been set as follows:
a =10"% B = 10, and K = 123. Fig. 2 depicts the em-
pirical recovery success rate, averaged over 50 experiments,
as a function of the number of measurements m. It should
be noticed that 2LMM-CS achieves the best performance and
the condition for perfect reconstruction is m > 125. Mod-CS
has the second best performance requiring m > 225 mea-
surements, followed by classical CS with m > 325. In this
setting, ¢1-f1 minimization and ¢;-{5 minimization require
m =~ 500, behaving poorly in this context.

Finally, we consider the case in which z* is generated as
above and the prior information is a blurred version of x*.
More precisely, w is obtained from z* by applying a blur filter
of order 3: w; = (x}_; 4+ x} + x},) /3. Therelative error is
|lw—z]||/||z|| = 0.8147. Figure 3 emphasizes that 2LMM-CS
achieves the best performance also in this setting, requiring
about 175 measurements for reconstruction. Instead, Mod-
CS, CS and ¢;-¢; minimization need a number of measure-
ments for reconstruction dramatically larger (m > 325) than
2L.MM-CS. Moreover ¢1-¢1 has the same performance of CS,
bringing no significant benefits in this case. Instead, the ¢;-
{5 minimization is not able to perform the recovery with a
number of measurements smaller than 425.
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Fig. 2. Empirical probability of reconstruction of classical CS
(BP), ¢1-f1 minimization, ¢1-f> minimization, and 2LMM-
CS.
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Fig. 3. Empirical probability of reconstruction of classical CS
(BP), ¢1-f1 minimization, ¢1-¢5 minimization, and 2LMM-
CS.

5. CONCLUDING REMARKS

In this paper, we have shown a new method to efficiently per-
form sparse recovery in presence of side information. Com-
bining MAP estimation with the parametric representation of
the signal with a Laplace mixture model, we have formulated
the problem as a weighted ¢;-minimization. The main theo-
retical contribution includes the derivation of sufficient con-
ditions for perfect recovery. Numerical simulations show that
these new algorithms reduce the number of measurements re-
quired for reconstruction and are robust for several models of
prior information.
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