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ABSTRACT

The L1 norm is often used as a penalty function to obtain a sparse
approximate solution to a system of linear equations, but it often un-
derestimates the true values. This paper proposes a different type of
penalty that (1) estimates sparse solutions more accurately and (2)
maintains the convexity of the cost function. The new penalty is a
multivariate generalization of the minimax-concave (MC) penalty.
To define the generalized MC (GMC) penalty we first define a mul-
tivariate generalized Huber function. The resulting cost function can
be minimized by proximal algorithms comprising simple computa-
tions. The effectiveness of the GMC penalty is illustrated in a de-
noising example.

Index Terms— Sparse regularization, sparse-regularized linear
least squares, basis pursuit denoising, convex optimization.

1. INTRODUCTION

We consider the problem of sparse-regularized linear least squares,
namely, the calculation of a sparse approximate solution to the linear
equations y = Ax by minimizing a cost function F : RN → R,

F (x) =
1

2
‖y −Ax‖22 + λψ(x), λ > 0 (1)

where ψ : RN → R is a penalty function that induces sparsity of x.
It is common to use the `1 norm for the penalty ψ because among
convex penalty functions it induces sparsity most effectively [14]. It
is desirable that F be a convex function, for then it does not possess
non-optimal local minima. Also, setting λ tends to be more straight-
forward when F is convex. Unfortunately, the use of the `1 norm
tends to produce solutions that underestimate the true values.

In this work, we propose a new penalty function for the sparse-
regularized linear least squares problem that improves upon the `1
norm. Specifically, we propose a non-convex non-separable penalty
that (i) more accurately estimates sparse solutions to y ≈ Ax and
(ii) maintains the convexity of the cost function F .

The new penalty function can be considered a generalization of
the scalar minimax-concave (MC) penalty [35]. In order to define the
new penalty function, we first define a multivariate generalization of
the Huber function. It is easy to ensure that the new penalty function
maintains the convexity of the sparse-regularized least squares cost
function (1), even when the matrix A is arbitrary. In particular, the
matrix A may be such that ATA is singular.

We define the proposed generalized MC (GMC) penalty using
tools of convex analysis [1]. In particular, we base the definition on
infimal convolution. The proposed GMC penalty does not appear to
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have a simple explicit expression. Nevertheless, the solution to the
sparse-regularized least squares problem with the GMC penalty can
be formulated as a saddle-point problem which can then be solved
using proximal algorithms (e.g., forward-backward splitting) involv-
ing only simple computations [1, 12].

We demonstrate the effectiveness of the proposed GMC penalty
for denoising a signal with a sparse Fourier transform. Compared to
the `1-norm solution which underestimates the true sparse Fourier
coefficients, the GMC solution is amplified and more accurate.

The ideas in this paper are also applicable to TV denoising [27].

1.1. Relation to Prior Work

Many prior works have proposed non-convex penalties that strongly
promote sparsity or describe algorithms for solving the sparse-
regularized linear least squares problem, e.g., [5–8, 11, 15, 16, 20,
21, 23, 26, 36]. However, most of this work (i) uses separable (ad-
ditive) penalties or (ii) does not seek to maintain the convexity of
the cost function. Non-separable non-convex penalties are pro-
posed in Refs. [31, 33], but they are not designed to maintain cost
function convexity. The development of convexity-preserving non-
convex penalties was pioneered by Blake, Zisserman, and Nikolova
[4, 22–24], and further developed in [3, 9, 13, 17–19, 25, 28, 30]. But
these are separable penalties, and as such they are fundamentally
limited. Specifically, if ATA is singular in problem (1), then a sep-
arable penalty constrained to maintain cost function convexity can
only improve on the `1 norm to a very limited extent [29].

We recently proposed a bivariate non-separable non-convex
penalty to overcome the fundamental limitation of separable non-
convex penalties [29]. But that penalty is useful for only a narrow
class of problems (deconvolution where the transfer function of the
convolution filter has no more than one zero on the unit circle). The
new proposed GMC penalty is applicable to much more general
linear inverse problems (e.g., deconvolution with arbitrary filters
and non-deconvolution problems).

2. GENERALIZED HUBER FUNCTION

We recall the definition of the Huber function, illustrated in Fig. 1(a).

Definition 1. The scalar Huber function s : R→ R is defined as

s(x) :=

{
1
2
x2, |x| 6 1

|x| − 1
2
, |x| > 1.

(2)

In this work, we propose a new multivariate generalization of
the scalar Huber function. We will use it in Sec. 3.

Definition 2. Given a matrixB ∈ RM×N , we define the generalized
Huber function SB : RN → R as

SB(x) := min
v∈RN

{
‖v‖1 +

1
2
‖B(x− v)‖22

}
. (3)
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Fig. 1: (a) The scalar Huber function. (b) The MC penalty function.

Although expression (3) does not resemble the formula for the
scalar Huber function (2), it does in fact reduce to the scalar Huber
function as a special case.

Example 1. The generalized Huber function reduces to the scalar
Huber function when B = 1, i.e.,

S1(x) = s(x), ∀x ∈ R. (4)

The generalized Huber function reduces to a scaled scalar Huber
function when B is a non-zero scalar. If B = α 6= 0, then

Sα(x) =
1

α2
s(α2x), ∀x ∈ R. (5)

Also,
lim
α→∞

Sα(x) = |x|, ∀x ∈ R. (6)

Example 2. The generalized Huber function reduces to the zero
function when B is the zero matrix. If B = 0 ∈ RM×N , then

S0(x) = 0, ∀x ∈ RN . (7)

The value zero is obtained with v = 0 in the definition (3).

The generalized Huber function reduces to a separable (additive)
function as special case.

Example 3. If BTB = α2I with α 6= 0, then SB is given by a sum
of scaled scalar Huber functions,

BTB = α2I =⇒ SB(x) =
1

α2

∑
n

s(α2xn). (8)

The utility of the generalized Huber function will be most appar-
ent whenBTB is a non-diagonal matrix. In this case, the generalized
Huber function is non-separable.

Example 4. For the matrix

B =

1 0
1 1
0 1

 (9)

the generalized Huber function SB is non-separable. See Fig. 2(a).

There is not a simple explicit formula for the generalized Huber
function for N > 2. But, using the definition (3), we can derive sev-
eral properties regarding the function. The proofs of the following
properties will be given in a future full-length paper.

Proposition 1. The generalized Huber function satisfies

0 6 SB(x) 6 ‖x‖1, ∀x ∈ RN . (10)

Proposition 2. The generalized Huber function satisfies

SB(x) =
1

2
‖Bx‖22, ∀x ∈ RN such that ‖BTBx‖∞ 6 1. (11)

Proposition 3. The generalized Huber function satisfies

SB(x) 6
1

‖B‖22

∑
n

s
(
‖B‖22 xn

)
, ∀x ∈ RN (12)

where ‖B‖22 is the maximum eigenvalue of BTB.

The generalized Huber function can be expressed in terms of
infimal convolution,

SB = ‖ · ‖1 �
1
2
‖B · ‖22. (13)

Infimal convolution is well studied in convex analysis [1]. Hence,
by expressing the generalized Huber function in terms of infimal
convolution, we can draw on results in convex analysis to derive
further properties of the generalized Huber function.

Proposition 4. The generalized Huber function SB is a proper
lower semicontinuous convex function.

Lemma 1. The generalized Huber function is differentiable.

Lemma 2. The gradient of the generalized Huber function satisfies

‖∇SB(x)‖∞ 6 1, ∀x ∈ RN . (14)

3. GENERALIZED MC PENALTY

In this section we use the generalized Huber function to define a new
class of multivariate non-convex penalty functions that maintain the
convexity of the sparse-regularized least squares cost function (1).

We start with the scalar penalty function illustrated in Fig. 1(b).
This is the minimax-concave (MC) penalty [2, 35].

Definition 3. The scalar minimax-concave (MC) penalty function
φ : R→ R is defined as

φ(x) :=

{
|x| − 1

2
x2, |x| 6 1

1
2
, |x| > 1.

(15)

The scalar MC penalty function can be expressed as

φ(x) = |x| − s(x) (16)

where s is the scalar Huber function (2).
We propose a multivariate generalization of the scalar MC

penalty function (15). The basic idea is to generalize (16) using the
`1 norm and the generalized Huber function.

Definition 4. Given B ∈ RM×N , we define the generalized MC
penalty function ψB : RN → R as

ψB(x) := ‖x‖1 − SB(x) (17)

where SB is the generalized Huber function (3).
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Fig. 2: (a) The generalized Huber function SB and (b) the general-
ized MC penalty function ψB , both for the matrix B in (9).

The generalized MC (GMC) penalty reduces to a separable
penalty when BTB is diagonal.

Example 5. If BTB = α2I with α 6= 0, then ψB is given by a sum
of scaled scalar MC penalty functions,

BTB = α2I =⇒ ψB(x) =
1

α2

∑
n

φ(α2xn). (18)

The generalized MC penalty is upper bounded by the `1 norm,
which is recovered as a special case (when B is the zero matrix).

Example 6. For all x ∈ RN , the generalized MC penalty satisfies

ψ0(x) = ‖x‖1 (19)

and
0 6 ψB(x) 6 ‖x‖1 (20)

which follow from (7) and (10).

Even though the GMC penalty is defined as the difference of two
convex functions, inequality (20) ensures the GMC penalty is non-
negative. This is important because penalty functions should usually
be non-negative.

The most interesting case (the case that motivates us to define
the GMC penalty) is the case where BTB is a non-diagonal matrix.
If BTB is non-diagonal, then the GMC penalty is non-separable.

Example 7. For the matrix B in (9), the generalized MC penalty
ψB is shown in Fig. 2(b).

4. SPARSE-REGULARIZED LEAST SQUARES

We now consider how to set the proposed GMC penalty so as to
maintain the convexity of the considered cost function (1).

Theorem 1. Let the scalar λ > 0 and the matrix A ∈ RM×N be
given. Define F : RN → R as

F (x) =
1

2
‖y −Ax‖22 + λψB(x) (21)

where ψB is the generalized MC penalty (17). If

BTB 4
1

λ
ATA (22)

then F is a convex function. (The meaning of expression (22) is that
(1/λ)ATA−BTB is positive semidefinite.)

Proof. Using (3) and (17), we write

F (x) = 1
2
‖y −Ax‖22 + λ

(
‖x‖1 − SB(x)

)
(23)

= 1
2
‖y −Ax‖22 + λ ‖x‖1 (24)

− min
v∈RN

{
λ‖v‖1 +

λ
2
‖B(x− v)‖22

}
= max
v∈RN

{
1
2
‖y −Ax‖22 + λ ‖x‖1 (25)

− λ‖v‖1 −
λ
2
‖B(x− v)‖22

}
= max
v∈RN

{
1
2
xT
(
ATA− λBTB

)
x+ λ‖x‖1 + g(x, v)

}
(26)

= 1
2
xT
(
ATA− λBTB

)
x+ λ‖x‖1 + max

v∈RN
g(x, v) (27)

where g is affine in x. The last term is convex as it is the point-wise
supremum of a set of convex functions (Prop. 8.14 in [1]). Hence, F
is convex if ATA− λBTB is positive semidefinite.

The convexity condition (22) is easily satisfied. Given A, we
may simply set

B =
√
γ/λA, 0 6 γ 6 1. (28)

Then BTB = (γ/λ)ATA which satisfies (22) when γ 6 1. The
parameter γ controls the non-convexity of the penalty ψB . If γ = 0,
then B = 0 and the penalty reduces to the `1 norm. If γ = 1, then
(22) is satisfied with equality and the penalty is ‘maximally’ non-
convex. We suggest in practice a nominal range of 0.5 6 γ 6 0.8.

4.1. Optimization

Even though the GMC penalty does not have a simple explicit for-
mula, a global minimizer of the sparse-regularized cost function (21)
can be readily calculated using proximal algorithms. It is not neces-
sary to explicitly evaluate the GMC penalty or its gradient.

To minimize the cost function F in (21) using proximal algo-
rithms, we rewrite it as a saddle-point problem. We assume BTB =
(γ/λ)ATA with 0 6 γ < 1, cf. (28). Then the problem of minimiz-
ing F in (21) can be written as the saddle-point problem:
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Fig. 3: Denoising using the `1 norm and the proposed GMC penalty.
The plot of optimized coefficients shows only the non-zero values.

(xopt, vopt) = arg min
x∈RN

max
v∈RN

F (x, v) (29)

where

F (x, v) =
1

2
‖y−Ax‖22+λ ‖x‖1−

γ

2
‖A(x−v)‖22−λ‖v‖1. (30)

This saddle-point problem is an instance of a monotone inclusion
problem. Hence, the solution can be obtained using the forward-
backward (FB) algorithm for such a problems; see Theorem 25.8 of
Ref. [1]. The FB algorithm involves only simple computational steps
(soft-thresholding and the operators A and AT).

5. NUMERICAL EXPERIMENT

This example illustrates the use of the generalized MC penalty for
denoising [10]. We consider the discrete-time signal

g(m) = 2 cos(2πf1m) + sin(2πf2m), m = 0, . . . ,M − 1 (31)

of length M = 100 with frequencies f1 = 0.1 and f2 = 0.22. The
signal g is sparse in the frequency domain, so we model the signal
as g = Ax where A is an over-sampled inverse discrete Fourier
transform and x ∈ CN is a sparse vector of Fourier coefficients with
N >M . Specifically, we define the matrix A ∈ CM×N as

Am,n =
(
1/
√
N
)
exp(j(2π/N)mn),

m = 0, . . . ,M − 1, n = 0, . . . , N − 1. (32)

The columns of A form a normalized tight frame, i.e., AAH = I
where AH is the complex conjugate transpose of A. For the denois-
ing experiment, we corrupt the signal with additive white Gaussian
noise (AWGN) with standard deviation σ = 1.0. See Fig. 3.
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Fig. 4: Average RMSE for three denoising methods.

The `1-norm and GMC solutions are shown in Fig. 3. We set
λ in each case so as to minimize the average root-mean-square error
(RMSE). This leads to the values λ = 1.8 and λ = 2.6, respectively.
For the GMC method, we setB using (28) with γ = 0.8. SinceBHB
is not diagonal, the GMC penalty is non-separable.

Like the `1-norm solution, the GMC solution minimizes a con-
vex cost function; yet, the GMC solution is significantly more ac-
curate than the `1-norm solution, as shown in Fig. 3. We observe
that the `1-norm solution is not as sparse in the frequency domain as
the GMC solution. In addition, the `1-norm solution underestimates
the significant (large-amplitude) Fourier coefficients. In comparison
with the `1-norm solution, the GMC solution is amplified.

Neither increasing nor decreasing the regularization parameter λ
helps the `1-norm solution here. A larger value of λ would make
the `1-norm solution sparser, but would reduce the amplitudes of
the significant Fourier coefficients, i.e., the significant coefficients
would be even more underestimated. A smaller value of λ would
increase the significant Fourier coefficients of the `1-norm solution,
but would make the solution less sparse and more noisy.

The favorable behavior of GMC is maintained over a range of
noise levels, as shown in Fig. 4. The figure shows the average RMSE
as a function of σ for 0.25 6 σ 6 2.0. We calculate the average
RMSE here using 150 noise realizations for each σ. The value of λ
must be adjusted according to the noise level σ. In this experiment,
for each noise level σ, we scale λ proportional to σ. That is, for the
`1 norm we set λ = 1.8σ; for the GMC penalty we set λ = 2.6σ.

The GMC approach also compares favorably with the iterative
p-shrinkage (IPS) algorithm [32,34]. We compare GMC to this algo-
rithm because, in a detailed comparison of several algorithms [29],
we found the IPS algorithm performed particularly well. In con-
trast to GMC, the IPS algorithm aims to minimize a non-convex cost
function (both algorithms use non-convex penalties). For IPS we set
λ so as to minimize the average RMSE at σ = 1 and then scale it
linearly for other σ (as we did for the `1-norm and GMC methods).
(This strategy for setting λ is not necessarily optimal for any of the
methods, but it is straightforward and indicative of the sensitivity of
each method to λ.) As shown in Fig. 4, the GMC method compares
favorably to the IPS algorithm in this experiment.

6. CONCLUSION

In the sparse-regularized linear least squares problem, the proposed
penalty promotes sparsity more effectively than the `1 norm while
maintaining the convexity of the cost function to be minimized.

4359



7. REFERENCES

[1] H. H. Bauschke and P. L. Combettes. Convex Analysis and
Monotone Operator Theory in Hilbert Spaces. Springer, 2011.
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