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ABSTRACT

We study sparse gross error correction for state estimation in a non-

linear sensing system. We consider a practical assumption that gross

errors are sparse, and their locations tend to be invariant over a few

consecutive measurement periods. Under the assumption, a robust

state estimation and error correction algorithm using multiple mea-

surement vectors is proposed based on local linear approximation

of the nonlinear measurement model. Unlike existing approaches in

the literature, the proposed method ensures that the estimated gross

error locations are such that system is observable, i.e., the system

state is uniquely identifiable. The proposed method was applied for

power system AC state estimation of the IEEE 14-bus network and

outperformed benchmark techniques.

Index Terms— Sparse signal recovery, gross error correction,

power system state estimation

1. INTRODUCTION

A large-scale sensing system such as a national-scale power grid re-

lies on state estimation for monitoring the operational conditions of

the system. In state estimation, we aim to estimate the system state

based on real time sensor measurements. The state estimate is com-

monly used as an input to important decision making processes such

as system control, and thus it is crucial to ensure that the estima-

tion error is within a tolerable range. In the absence of gross er-

rors in the measurements, the typical state estimation process com-

putes maximum likelihood (ML) or maximum a posteriori (MAP)

estimates [1, 2]. However, if a portion of the measurements is cor-

rupted by gross errors, Gaussian model ML or MAP estimates can

be significantly biased; a proper robust state estimation mechanism

is necessary.

In practice, gross errors can originate from sensor failures, cal-

ibration errors [3], or data falsification by a cyber attack [4]. Cor-

rection of gross errors introduced by an adversary of a cyber attack

can be particularly challenging as the gross errors can be designed

in an elaborate manner by the adversary. If the attacker can manip-

ulate a proper subset of measurements, he or she can even introduce

gross errors that are fundamentally not identifiable [5, 6]. In order

to prevent such a scenario, several strategies have been proposed to

restrict locations of gross errors such that the errors are detectable

and identifiable [7, 8]. In this paper, we study robust state estima-

tion and gross errors correction assuming that the gross errors are

identifiable.

In most practical sensing systems, gross errors exhibit some

common properties. First, only a small number of sensor mea-

surements are affected by gross errors, i.e., gross errors are sparse.

This work is partially supported by the National Science Foundation
grant CCF-1254218.

The sparsity assumption has been popularly exploited to enhance

the performance of gross error correction (see [9–12]). Another

common property of gross errors, which has not been popularly

explored, is that potential gross error locations remain invariant over

multiple measurement periods. For instance, if gross errors originate

from sensor failure, the gross error locations remain the same until

more sensors fail, or some failed sensors are repaired [13]. On the

other hand, if the gross errors are due to a cyber attack, the subset

of sensors that are compromised by the attacker remains the same

over multiple measurement periods [8]. This invariance property

results in temporal correlation among gross error locations over

multiple measurement periods. The temporal correlation of error

locations was recently exploited in [14] to improve robust state

estimation performance, but the presentation therein is limited to

linear measurement systems. Here, we present a robust state estima-

tion framework that exploits the temporal correlation of gross error

locations for generic nonlinear sensing system.

Our contributions in the paper are as follows. We present a

sparse error correction and robust state estimation approach for non-

linear sensing systems that exploits short-term invariance of poten-

tial error locations. Another novel aspect of our approach is that the

system observability is preserved in the error localization procedure.

It has been shown in [5,7] that if gross errors are fundamentally iden-

tifiable, the system should remain observable even after removing

the sensors that are corrupted by the gross errors. Therefore, assum-

ing that the underlying gross errors are identifiable, it is reasonable

to restrict the estimate of error locations such that the system will re-

main observable after removal of the corresponding corrupt sensors.

The proposed robust state estimator adopts an observability-aware

error localization step to improve the estimation accuracy. Lastly,

we demonstrate that the proposed method can be successfully ap-

plied for power system AC state estimation of the IEEE 14-bus net-

work and outperform benchmark techniques.

1.1. Related works and organization

Gross error correction problem has been studied for decades in var-

ious contexts, e.g., power system state estimation [2], error control

coding [15]. The sparse nature of gross errors has been exploited in

several existing approaches [9–12,15,16], but most of them have not

exploited the short-term invariance of potential error locations. Re-

cently, a sparse error correction method exploiting short-term invari-

ance of potential error locations was proposed [14] , but the approach

therein is limited to linear sensing systems.

In the current paper, we are extending the framework in [14]

to make it applicable to generic nonlinear sensing systems, and the

observability-aware error localization is adopted to improve accu-

racy of robust state estimation.

The organization of the paper is as follows. In Section 2, we
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present the mathematical formulation of robust state estimation in

the presence of gross errors. Section 3 presents our sparse error

correction and robust state estimation approach. In Section 4, we

present the result of applying the proposed estimator to power sys-

tem AC state estimation. Section 5 contains some concluding re-

marks.

2. PROBLEM FORMULATION

2.1. Notations

Throughout this paper, vectors and matrices are denoted using bold

lower case letters (e.g., x) and bold upper case letters (e.g., X) re-

spectively. The ith entry of a vector x is denoted by x[i] and the ith

row of the matrix X is denoted by Xi,:. We use Im to denote the

m × m identity matrix and 0 to denote a vector or a matrix of all

zeros with appropriate dimensions.

Here, supp(x) denotes the support of x, which is defined as the

set of indices of nonzero entries of x. On the other hand, the set of

row indices of nonzero rows of a matrix X is defined as the support

of X and is denoted by supp(X). Note that if X = [x1 · · ·xL] then

supp(X) = ∪L
t=1supp(xt). Furthermore, the Frobenius norm of X

is denoted by ‖X‖F ,

√

∑

i,j
X2

ij .

2.2. Nonlinear measurement model with gross errors

In this paper, we consider a generic nonlinear sensing system, in

which measurements are related to the system state by a nonlinear

measurement function. Specifically, at a given measurement period

t, the measurement vector zt ∈ R
m is related to the system state

xt ∈ R
n as follows:

zt = h(xt) + et + at, t = 1, . . . , L. (1)

where h(·) is a nonlinear function of the system state. We assume

that h(·) is differentiable and locally observable at every xt, i.e., the

Jacobian of h(·) has full rank. This condition is necessary to guar-

antee that the system state is uniquely identifiable based on noise-

less measurements. The measurement noise vector is denoted as

et ∈ R
m. We assume that the entries of et have an independent

and identically distributed (i.i.d.) Gaussian distribution with zero

mean and variance σ2. Finally, at ∈ R
m denotes the unknown de-

terministic gross error vector. The model described in (1) can also

be written in the following matrix form.

Z = h(X) +E+A, (2)

where

Z , [z1 . . . zL], X , [x1 . . .xL], E , [e1 . . . eL],

A , [a1 . . . aL], h(X) , [h(x1) . . . h(xL)].

Our aim is to exploit the sparsity and temporal correlation prop-

erty of gross errors for error correction. To this end, we impose

the following conditions: there exists an unknown set of potential

gross error locations S ⊂ {1, . . . ,m} such that |S| ≪ m and

supp(at) ⊂ S, t = 1, . . . , L. As supp(A) = ∪L
t=1supp(at),

the aforementioned conditions imply that supp(A) ⊂ S, and thus

A is a row-sparse matrix.

2.3. State estimation with multiple measurement vectors

In state estimation, we aim to estimate the states {xt}Lt=1, based

on the observed sensor measurements {zt}Lt=1. When gross errors

are present, we essentially need to estimate the pairs {(xt,at)}Lt=1

using the sensor measurements. Conventional robust estimation ap-

proaches estimate the pair (xt,at) by observing the sensor measure-

ment zt only [2, 9, 15]. In contrast, in order to exploit the temporal

correlation of gross error locations, we utilize multiple measurement

vectors to simultaneously obtain state estimates for multiple periods.

In other words, we aim at estimating the pair (X,A) based on Z.

2.4. Gross error identifiability

To be able to obtain an accurate estimate of (X,A), the underlying

gross errors have to be fundamentally identifiable based on the spar-

sity assumption. The concept of identifiability is easier to understand

from the following noiseless measurement model:

Z = h(X) +A. (3)

If the true gross error matrix is the unique sparsest row-sparse ma-

trix that is consistent with Z, then A can be identified as the sparsest

row-sparse matrix that is consistent with the measurements. Oth-

erwise, A cannot be uniquely identified from Z based on the row-

sparsity assumption. We can formally define identifiability as fol-

lows.

Definition 2.1 The pair (X,A) is said to be identifiable if it is the

unique solution to the following equation with a row-sparsity con-

straint: “ We solve for (X̃, Ã) :

h(X̃) + Ã = h(X) +A, |supp(Ã)| ≤ |supp(A)|”. (4)

The gross error matrix A is said to be identifiable if (X,A) is iden-

tifiable for all X ∈ R
n×L.

In this paper, we consider robust state estimation and error correction

in the presence of identifiable gross errors. Gross errors that are not

identifiable according to Definition 2.1 cannot be corrected based on

the sparsity assumption, and dealing with such cases is out of scope

of this paper.

2.5. Observability condition for identifiability

If the pair (xt,at) is identifiable, then after removing the measure-

ments that are corrupted by nonzero gross errors (i.e., those indexed

by supp(a),) we should be able to estimate the states uniquely from

the remaining measurements. In other words, the system should be

observable even after removing the corrupted measurements. To il-

lustrate this, we use the first order approximation of (1) at a nominal

operating point xo:

zt = h(xt) + at ≈ h(xo) +Ho · (xt − xo) + at. (5)

where Ho denotes the Jacobian of h(·) evaluated at xo, which has

full column rank.

Now, suppose that Ho becomes rank-deficient if we remove the

rows that are indexed by supp(at): i.e., the system becomes un-

observable after removal of the corrupted measurements. Then, it

implies that there exists a nonzero u ∈ R
n such that supp(Hou) ⊂

supp(at) (e.g., see Theorem 1 in [5].) Then, we have

h(xo)+Ho · (xt −xo)+at = h(xo)+Ho · (x̄t −xo)+ āt. (6)
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where x̄t , xt + u, and āt , at − Hou. Note that supp(āt) is

included in supp(at). Therefore, (x̄t, āt) is also consistent with zt

with |supp(āt)| ≤ |supp(at)|, and thus (xt,at) is not identifiable.

The above arguments imply that for identifiable gross errors,

the Jacobian Ho should remain full rank after its rows indexed by

supp(at) are removed. When the measured components of a sens-

ing system are sparsely connected or locally coupled, as in power

systems [2], removing only few sensors from the system can cause

the Jacobian to become rank-deficient. In such cases, we can exploit

the observability property of identifiable gross errors to enhance ac-

curacy of gross error localization. In the next section, we will present

an observability-aware approach of gross error localization.

3. ROBUST STATE ESTIMATION ALGORITHM:

NONLINEAR MEASUREMENT SYSTEM

In this section, we present our robust state estimator. In our ap-

proach, we first estimate the gross error matrix A by promoting the

row-sparsity of A while restricting it to be consistent with the mea-

surement model and the measurements Z. Then, the gross error esti-

mate is used to identify gross error locations by taking into account

the observability condition described in Section 2.5. Finally, assum-

ing that the estimated error locations are correct, we compute the

ML estimate of the system state.

3.1. Estimation of row-sparse gross error matrix

For an identifiable gross error matrix A, the true gross error matrix

is the unique, row-sparsest gross error matrix that is consistent with

the measurements, as stated in Definition 2.1. To promote the row-

sparsity of gross error estimates while avoiding combinatorial com-

plexity, we solve the following optimization to obtain our estimate

of A:

min
X̃,Ẽ,Ã

‖Ã‖1,2, (7)

subject to Ã = Z− h(X̃)− Ẽ;

‖Ẽ‖F ≤ ǫ.

where ‖Ã‖1,2 ,
∑m

i=1
‖Ãi,:‖2. For most nonlinear systems, the

above problem is non-convex, and thus finding a global optimum is

computationally intractable. However, if the system state is known

to be near certain nominal operating point, which we denote by xo,

then we can resort to finding a local optimum in a neighborhood of

xo. To this end, we employ an iterative linear approximation method

to find a local optimum. The concrete steps are as follows:

1. Initialization: Set x̃0
t = xo, t = 1, . . . , L, and k = 1.

2. Iteration: let ∆z
k
t = zt − h(x̃k−1

t ) and solve the following

convex optimization problem:

min
∆x̃k

t
,ẽk

t
,ãk

t

‖Ãk‖1,2,

subj. to ã
k
t = ∆z

k
t −H

k−1

t ∆x̃
k
t − ẽ

k
t ,

t = 1, . . . , L;

‖Ẽk‖F ≤ ǫ.

(8)

where H
k−1

t is the Jacobian of h(·) evaluated at x̃k−1

t . The

optimal solution ∆x̃
k
t to (8) is then used to update the state

estimation by

x̃
k
t = x̃

k−1

t +∆x̃
k
t . (9)

3. If ‖∆x̃
k
t ‖2 becomes less than a predetermined threshold ǫ or

k reaches the maximum number of iterations, then return Ã
k.

Otherwise, increment k by one and go to Step 2.

3.2. Observability-aware gross error localization and state esti-

mation

The estimate Ã
∗, obtained as an outcome of the above iterative al-

gorithm, tends to be biased due to the use of ‖ · ‖1,2 norm. Further,

the support of Ã
∗ might not satisfy the observability property of

identifiable gross errors that we discussed in Section 2.5. There-

fore, rather than making a direct use of Ã∗, we use it to estimate

the locations of gross errors and then compute the ML estimate of

the system states. For gross error localization, we first compare each

‖Ã∗

i,:‖2 to a threshold to determine a candidate set of gross error

locations. Then, among the candidate locations, we chose the ones

with largest ‖Ã∗

i,:‖2 values while satisfying the observability condi-

tion. Once the gross error locations are estimated, we compute the

ML estimates of the system states. The concrete steps are as follows:

1. Obtain a candidate set of gross error locations, denoted by I:

I , {i : ‖Ã∗

i,:‖2 > σ
√
L}. (10)

2. Observability-aware error localization: compute K, the set

of estimated error locations, as follows.

(a) Initialize K = ∅.

(b) Find i∗ = argmax
i∈I

‖Ã
∗

i,:‖2.

(c) Let Ho denote the Jacobian of h(·) at xo. Obtain a

submatrix H̄o of Ho by removing the rows of Ho that

are indexed by K ∪ {i∗}.

(d) Observability check: if H̄o has full column rank, set

K = K ∪ {i∗}.

(e) Remove i from I. If I becomes empty, go to Step 3.

Otherwise, go to Step 2-(b).

3. Remove the rows of z1, . . . , zL, and h(·) that are indexed by

K. Based on the remaining system, compute the nonlinear

least squares estimates of states:

x̃t = argmin
xt

‖zt − h(xt)‖22, t = 1, . . . , L. (11)

4. EXPERIMENTAL RESULTS: POWER SYSTEM AC

STATE ESTIMATION

We tested the proposed estimator for power system AC state esti-

mation of the IEEE 14-bus network [17]. In power system AC state

estimation, the system state is defined as the vector of bus voltage

magnitudes and phase angles. There are various types of sensors

in power systems, but for simplicity, we considered only two types

of sensors: line flow and bus injection sensors. A line flow sensor

measures a power flow from certain bus to its neighboring bus, and

a bus injection sensor measures the amount of power injection at a

certain bus. These sensor measurements are related to the state by

the nonlinear measurement function that can be simply derived by

using Kirchhoff’s laws (see Chapter 2 of [2] for details.)

In our simulations, we assumed that every line in the 14-bus net-

work has line flow sensors for both directions, and every bus has a

bus injection sensor. This setting results in total 108 sensor mea-

surements per measurement period and 27 state variables. At each

Monte Carlo run, state vectors were sampled from the i.i.d. Gaus-

sian distribution with the mean equal to the operating point given in

the IEEE 14-bus data [17] and standard deviation σx = 0.02. The

measurement noise vectors were sampled from the i.i.d. Gaussian

distribution with zero mean and standard deviation σe = 0.005. For
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generating gross errors, we first picked 12 random locations of gross

errors. Specifically, the network was partitioned into four parts, and

within each part, three locations were selected uniformly at random1.

Then, for t = 1, . . . , L, the gross error locations were fixed to the

selected locations. We considered two different types of gross errors:

random Gaussian gross errors and state-dependent gross errors that

reverse the sign of the affected measurements. For random Gaussian

gross errors, gross error entries were sampled from the i.i.d. Gaus-

sian distribution with zero mean and standard deviation σa = 0.1
p.u. For the sign reversal case, we simply flipped the signs of the

measurement entries that correspond to the selected gross error lo-

cations. In the initialization step of the gross error matrix estimation

algorithm, we set xo to flat start, i.e., we set all the voltage magni-

tudes to 1 p.u., and all the phase angles to 0. This is a reasonable

assumption, as under normal operating conditions, the bus voltage

magnitudes tend to be close to the nominal voltage, and the phase

angle differences between buses tend to be very small (see [2]).

For performance evaluation, we considered two performance

metrics. The first one is the normalized mean squared error (MSE):

ρl2 =
E[ 1

L

∑L

t=1
(‖x̃t − xt‖22)]

E[ 1
L

∑L

t=1
(‖x̃oracle

t − xt‖22)]
. (12)

where x̃oracle
t is the oracle estimate of xt, which is the ML estimate

computed after all corrupt measurements are correctly removed. The

second metric is the probability of detection, denoted by pdet, which

is the probability of the event that all gross error locations are iden-

tified as error locations by our method. This probability quantifies

how well our method can filter out corrupt measurements.

4.1. Performance of the proposed robust estimator

Fig. 1 shows the plots of the normalized MSE versus the number of

measurement vectors used by our method.
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Fig. 1. Normalized MSE for proposed estimator versus measure-

ment period L. The results are based on 500 Monte Carlo runs.

By utilizing more number of measurement vectors, our method

was able to decrease the normalized MSE very close to 1. For com-

parison, we also tested two benchmark robust estimators for nonlin-

ear systems: the iterative J(x̂) test [2] and the l1 norm minimization

method [9]. In estimating xt, both methods utilize only the mea-

surements at time t, i.e., zt. Table 1 shows the performance of the

benchmark techniques. Comparing with Fig. 1, one can see that our

method outperformed the benchmarks. In particular, the l1 norm

minimization approach in [9] is equivalent to our approach without

1This way of selecting error locations can increase the chance that the
resulting gross errors are identifiable (see [5] for the rationale behind this.)

the observability-aware error localization step, if our method uses a

single measurement vector (L = 1). Therefore, the results suggest

that incorporating the observability-aware error localization step led

to a significant improvement in robust estimation performance.

Gaussian gross error Sign reversal

J(x̂) [2] 3.6656 3.1752

l1 min. [9] 4.5500 10.4502

Table 1. Normalized MSE of benchmark techniques.

The probability of detection also increased as L increased. For

example, in the case of Gaussian gross errors, pdet increased from

0.8194 to 1 when L increased from 1 to 5. In the case of sign reversal

errors, pdet increased from 0.9552 to 1 as L increased from 1 to

3. For both types of gross errors, the error localization accuracy

improved as we utilized more measurement vectors.

5. CONCLUSION

We presented a new approach of sparse gross error correction for

nonlinear sensing systems that exploits both the temporal correlation

of gross error locations and the observability property of identifiable

gross errors. The proposed estimator was applied for power sys-

tem AC state estimation and outperformed benchmark techniques.

While our experimental results are promising, theoretical analysis

of the proposed framework is needed. In the future work, we will

examine the convergence of the proposed iterative method of gross

error estimation and derive performance guarantees for our robust

estimator.
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