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ABSTRACT

In scaled lasso, the unknown regression coefficients and the
scale parameter of the error distribution are estimated jointly.
In lasso, the optimal penalty parameter is well-known to de-
pend on the error scale, and it is therefore typically chosen us-
ing cross-validation. The main benefit of scaled lasso is that
the penalty parameter is scale-free and can be predetermined
from pure theoretical considerations. Nevertheless, scaled
lasso performs poorly when there exist strong correlations be-
tween the predictors. As a remedy, we propose two different
scaled elastic net (EN) formulations and derive convergent al-
gorithms for their computation. The first formulation uses a
conventional EN penalty whereas the second formulation dif-
fers from the former in that the `2-loss is not squared. The
former approach is referred to as the scaled EN estimator and
the latter as the square-root EN estimator. We illustrate via
numerical examples and simulations that the proposed meth-
ods outperform the scaled lasso, especially in the presence of
high mutual coherence in the feature space.

Index Terms— Scaled lasso, square-root lasso, penalized
linear regression, scale invariance, elastic net.

1. INTRODUCTION

We consider a linear model y = Xβ + ε, where y is the
observed n-dimensional response (measurement) vector,
X =

(
x1 · · · xp

)
is the fixed n × p design matrix, β is

a p-dimensional vector of unknown regression coefficients,
and ε is an unobserved n-vector of i.i.d. random variables
from a symmetric distribution with an unknown error scale
parameter σ. As is common in penalized regression, we stan-
dardize the columns of X to unit norm, i.e., ‖xj‖2 = 1. The
popular lasso (Least Absolute Shrinkage and Selection Oper-
ator) [1] estimator is defined as the minimizer of the criterion
‖y −Xβ‖22 + λ‖β‖1, where λ ≥ 0 is a penalty parameter,
or threshold level, chosen by the user. For more references
on earlier work on `1-regularization and its usage and ap-
plications in other fields, see, e.g., references [2, 3, 4, 5] to
mention only a few. The theoretically optimal values of λ
depend on the scale parameter σ, the estimation of which is
a non-trivial task, especially in high-dimensional problems.
Consequently, the penalty parameter λ is typically chosen us-
ing data adaptive methods such as cross-validation. Although

cross-validation often performs well in choosing a model
for prediction, in addition to being computationally costly, it
does not provide consistent model selection [6].

In scaled lasso [7], the penalty parameter is no longer
dependent on the error scale and therefore optimal universal
penalty levels can be selected based on theoretical properties
of the estimator. It has also proven to be an accurate method
in the estimation of the error variance in high-dimensional
settings [8]. In scaled lasso, one estimates the unknown re-
gression coefficients and the scale simultaneously by solving
Huber’s [9] jointly convex concomitant criterion function:

minimize
β∈Rp,σ>0

‖y −Xβ‖22
2σ

+
nσ

2
+ λ ‖β‖1 . (1)

The problem was first studied in [10] and a theoretical anal-
ysis was provided in [7]. Interestingly, the solution path of
the scaled lasso is 1-to-1 with the lasso path, the benefit be-
ing that in scaled lasso the penalty parameter is now scale-
independent. The scaled lasso solution β̂ is also a solution of
the optimization program

minimize
β∈Rp

‖y −Xβ‖2 + (λ/
√
n) ‖β‖1 , (2)

which is called the square-root lasso [11].
A well-known deficiency of the lasso (and scaled lasso)

is its poor performance in case of high mutual coherence (or
multicollinearity), i.e., when the basis vectors xj are highly
correlated. Moreover, lasso picks at most n variables in the
p > n case. The elastic net (EN) [12] is a popular regulariza-
tion and variable selection method that overcomes the above
shortcomings by utilizing a penalty function that is a combi-
nation of the `1 and `2-norm penalties, defined as

PEN(β;α) =
1

2
(1− α) ‖β‖22 + α ‖β‖1 , (3)

where α ∈ [0, 1] is an additional EN tuning parameter. The
EN penalty reduces to the lasso penalty when α = 1 and to
the ridge regression [13] penalty when α = 0.

In this paper, we extend the idea of scaled lasso to the
elastic net and solve the optimization programs

minimize
β∈Rp,σ>0

‖y −Xβ‖22
2σ

+
nσ

2
+ λP(β;α), (4)
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where P(β;α) is either the conventional EN penalty (3), or

P√EN(β;α) = (1− α) ‖β‖2 + α ‖β‖1 , (5)

referred to as the square-root EN penalty since it utilizes a
non-squared `2-norm, as does the square-root lasso in (2).
When α = 1, both estimators reduce to the conventional
scaled (or square-root) lasso, but for intermediate values they
differ; and for α = 0, they yield different scaled ridge regres-
sion estimators. Both approaches are potentially interesting
EN penalties to be used in scaled sparse regression. The for-
mer approach is referred to as the scaled EN estimator and
the latter as the square-root EN estimator.

The paper is organized as follows. In Section 2, we study
the scaled EN estimator and derive a cyclic coordinate-wise
descent (CCD) algorithm to find its solution. Section 3 stud-
ies the square-root EN estimator and derives the correspond-
ing CCD algorithm for its computation. Finally, Section 4
provides numerical examples as well as a simulation study.
Section 5 concludes.

Notations: For an n-dimensional vector a, the `2-norm
and `1-norm are defined as ‖a‖2 =

√
a>a and ‖a‖1 =∑n

i=1 |ai|, respectively. The pseudo-norm ‖a‖0 =
∑n
i=1 Iai 6=0,

where the symbol IA denotes an indicator function, counts the
number of non-zero elements in the vector. Notations such
as sign(a) imply that the univariate function sign(·) acts
coordinate-wise to vector a, so that [sign(a)]i = sign(ai).
The soft-thresholding operator is defined as [S(a, λ)]i =
sign (ai) (|ai| − λ)+, where (·)+ = max{·, 0} denotes the
subplus operator.

Relations to prior work: The square-root lasso was ex-
tended to the group square-root lasso in [14]. Our work con-
tinues with extending the scaled (or square-root) lasso to the
elastic net.

2. SCALED EN ESTIMATOR

Let us first note that the minimizer of both estimators in (4)
with respect to the noise scale σ satisfies−‖y−Xβ‖22/(2σ̂2)+
n/2 = 0, which gives

σ̂(β) =
‖y −Xβ‖2√

n
, (6)

whereas the minimizer with respect to β differs between the
two variants.

The scaled EN estimators of regression and scale, (β̂, σ̂),
are defined as the minimizers of the criterion

‖y −Xβ‖22
2σ

+
nσ

2
+ λ

{
(1− α)

2
‖β‖22 + α ‖β‖1

}
(7)

over (β, σ) ∈ Rp × (0,∞). The criterion function in (7)
is separable as it can be written in the form: f(β, σ) =
g(β, σ) +

∑p
j=1 hj(βj), where g : Rp × (0,∞) → R is

convex and differentiable and hj : R → R are convex [3].

A CCD procedure, in which the function is minimized cycli-
cally with respect to one coordinate at a time, is therefore
guaranteed to converge [15]. Hence, we will next derive a
CCD algorithm for the problem.

Let X−j and β−j denote the matrix X and vector β with
the jth column and element excluded, respectively, and let xj
denote the jth column of X. We rewrite the objective function
in (7) as∥∥rrr(j) − xjβj

∥∥2
2

2σ
+
nσ

2
+ λ

{
(1− α)

2
β2
j + α|βj |

}
+ λ

{
(1− α)

2

∥∥β−j∥∥22 + α
∥∥β−j∥∥1} , (8)

where rrr(j) = y−X−jβ−j denotes the partial residual vector.
Using the following notation:

λ1 = σ̂αλ, λ2 = σ̂(1− α)λ, (9)

the minimizer of (8) with respect to βj , when considering the
other coefficients βk, k 6= j, and σ fixed at their current iter-
ates, needs to verify the zero subgradient equation

−x>j (rrr(j) − xj β̂j) + λ2β̂j + λ1t̂j = 0,

where t̂j is a subgradient of |βj | evaluated at β̂j , i.e., equal to
β̂j/|β̂j | if β̂j 6= 0 and some number in [−1, 1] otherwise. If
β̂j 6= 0, then t̂j = β̂j/|β̂j |, and we have(

1 + λ2 +
λ1

|β̂j |

)
β̂j = x>j rrr

(j). (10)

Taking the absolute value of both sides of (10) and some al-
gebra yields

|β̂j | =
|x>j rrr(j)| − λ1

1 + λ2
. (11)

Since we assumed β̂j 6= 0, the term |x>j rrr(j)| − λ1 has to be
positive. Substituting (11) into (10) and solving for β̂j yields

β̂j =
x>j rrr

(j)

|x>j rrr(j)|

(
|x>j rrr(j)| − λ1

)
+

1 + λ2
=
S(β̂j + x>j rrr, λ1)

1 + λ2
.

(12)
In obtaining the last identity, we used that rrr = rrr(j) − xj β̂j .

The algorithm for solving the scaled lasso (1) in [7] is
an iterative procedure in which the scale and the coefficients
are updated sequentially. A same type of approach can be
adopted for the scaled EN following from the CCD principle.
Thus, the scale is first updated using (6) and the current full
iterate β̂ in place of β. Thereafter, one performs coordinate-
wise minimization over all predictors j ∈ {1, . . . , p} accord-
ing to (12) holding β−j and σ fixed at their current iterates
β̂k, k 6= j, and σ̂. These two steps are alternated until conver-
gence as described in Algorithm 1.
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Algorithm 1: Scaled EN and square-root EN

Input : X,y, λ, α, β̂ ← 0
while not converged do

σ̂ ← ‖y −Xβ̂‖2/
√
n;

λ1 ← σ̂αλ, λ2 ← σ̂(1− α)λ;
for j = 1 to p do

rrr ← y −Xβ̂;
if Scaled EN then

β̂j ←
S
(
β̂j + x>j rrr , λ1

)
1 + λ2

else if Square-root EN then
if condition (14) is met then

β̂ ← 0;

else

β̂j ←
S
(
β̂j + x>j rrr , λ1

)
1 + λ2/‖β̂‖2

Output: (β̂, σ̂)

It is instructive to consider the orthonormal design matrix
case, i.e., X>X = I and n = p. With a little algebra, it is
easy to show that (β̂, σ̂) then satisfies

β̂ =
S
(
X>y, λ1

)
1 + λ2

and σ̂ =
‖y −Xβ̂‖2√

n
.

As with the conventional elastic net, one can argue that also
the scaled EN can suffer from a double shrinkage effect due
to both ridge and lasso style shrinkage which introduces un-
wanted excess bias. As a consequence, the estimator can
loose its predictive power. To remedy for the double shrink-
age effect, we define, similar to [12], the corrected scaled EN
estimates of regression and scale, (β̂

∗
, σ̂∗), as β̂

∗
= (1 +

λ2)β̂ and σ̂∗ = σ̂(β̂
∗
).

3. SQUARE-ROOT EN ESTIMATOR

The square-root EN estimators, (β̂, σ̂), are defined as the min-
imizers of the criterion

‖y −Xβ‖22
2σ

+
nσ

2
+ λ
{

(1− α) ‖β‖2 + α ‖β‖1
}

(13)

over (β, σ) ∈ Rp × (0,∞).
The zero subgradient equation of (13) with respect to β is

−X>(y −Xβ̂) + λ2ŝ + λ1t̂ = 0,

where (λ1, λ2) are defined in (9), t̂ is a p-vector whose jth

element belongs to the subdifferential of |βj | evaluated at β̂j ,
and ŝ belongs to the subdifferential of ‖β‖2 evaluated at β̂,

i.e., ŝ = β̂/‖β̂‖2 if β̂ 6= 0 and ŝ ∈ {s ∈ Rp : ‖s‖2 ≤ 1} if
β̂ = 0. It can be shown that the zero subgradient equation is
satisfied with β̂ = 0 if and only if∥∥S(X>y, λα‖y‖2/

√
n
)∥∥

2
≤ λ(1− α)‖y‖2/

√
n. (14)

If we assume β̂j 6= 0, then(
1 +

λ2

‖β̂‖2
+

λ1

|β̂j |

)
β̂j = x>j rrr

(j). (15)

Taking the modulus of both sides and solving for |β̂j | yields

|β̂j | =

(
1 +

λ2

‖β̂‖2

)−1 (
|x>j rrr(j)| − λ1

)
+
.

Plugging this back into (15) and solving for β̂j gives

β̂j =
x>j rrr

(j)

|x>j rrr(j)|
(|x>j rrr(j)| − λ1)+

1 + λ2/‖β̂‖2
=
S(β̂j + x>j rrr, λ1)

1 + λ2/‖β̂‖2
.

As a consequence of non-separability, the formula depends on
the norm of the optimal coefficients. In order to use the for-
mula, we simply use the norm of the previous full iterate β̂.
The procedure is given in Algorithm 1. For this problem, one
could also have utilized a theoretically better justified gener-
alized gradient descent scheme as in [16].

It is again instructive to consider the orthonormal design
matrix case, i.e., X>X = I and n = p. With a little algebra,
it is easy to show that (β̂, σ̂) then satisfies

β̂ =

(
1− λ2
‖S(X>y, λ1)‖2

)
+

S
(
X>y, λ1

)
,

σ̂ = (1/
√
n)‖y −Xβ̂‖2.

To remedy for the double shrinkage effect, we define the
corrected square-root EN estimates of regression and scale,
(β̂
∗
, σ̂∗), as

β̂
∗

=
(

1− λ2
‖S(X>y, λ1)‖2

)−1
+
β̂

and σ̂∗ = σ̂(β̂
∗
).

4. NUMERICAL RESULTS

The asymptotic results for the scaled lasso when n →
∞ (including the case p ≥ n ≥ ‖β‖0 → ∞) suggest
λ ∝

√
log(p) for the optimal tuning parameter [7]. When

the sample size is finite, the performance will depend on
the chosen proportionality constant. In the original pa-
per [7], three different values for λ are considered; namely√

2j−1 log(p), where j = 1, 2, and 3. Herein we consider
those same values. In the simulations, we use the uncorrected
EN estimators.
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4.1. Example 1: Grouping effect of collinear variables

The first set-up illustrates the superiority of the EN penalties
to lasso in situations of high mutual coherence as well as the
grouping effect. The set-up is as in [3], where the linear model
consists of two groups of three highly correlated predictor
variables. The data is generated as y = 3z1 − 1.5z2 + 2ε,
where z1, z2 ∼ N (0, In×n), and ε ∼ N (0, In×n), where
n = 100; and the design matrix is generated as follows:
xj = z1Ij∈{1,2,3} + z2Ij∈{4,5,6} + (1/5)εj , where εj ∼
N (0, In×n), j ∈ {1, . . . , 6}. The predictors are then stan-
dardized to unit norm. As the tuning parameter λ is varied,
the estimated regression coefficients trace a path in Rp, re-
ferred to as the solution path, shown in Figure 1. Even with
a very mild EN parameter value α = 0.95, the scaled and
square-root EN estimators are able to identify the two groups
of correlated variables and connect them by setting them to
zero at the same value of λ. By contrast, the scaled lasso fails
to do so.
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Fig. 1. The solution path of scaled lasso (left panel), scaled
EN and square-root EN (right panel) with α = 0.95.

4.2. Example 2: Performance vs. SNR

In the second set-up, we consider the following linear model:
(n, p) = (50, 10), the row vectors of X are normally dis-
tributed with mean vector 0p×1 and covariance matrix Σ,
Σij = corr(i, j) = 0.9|i−j| for i, j = 1, . . . , p. In Figure 2
(a), we have β = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)> = β(1), and in
(b), we have β = (1, 2, 3, 4, 5, 0, 0, 0, 0, 0)> = β(2). For all
methods, the tuning parameter value is set to λ =

√
2 log(p).

The EN tuning parameter is set to α = 0.9 for both the scaled
EN and the square-root EN. Figure 2 depicts the (empirical)
mean squared error (MSE) versus the signal to noise ratio
(SNR). As can be seen, both the scaled EN and the square-
root EN outperform the scaled lasso. Here, the MSE is de-
fined as MSE(β̂) = Ave{ 1p‖β̂ − β‖

2
2}, where the average is

over 200 Monte-Carlo trials, and the SNR (dB) is defined as
10 log10(σ2

β/σ
2), where σ2

β =
∑
j |βj |

2
/ ‖β‖0.

4.3. Example 3: A high-dimensional setting

Next, we consider a high-dimensional problem where (n, p) =
(30, 150). The design matrix is generated as in exam-
ple 2, SNR = 0 dB, the true coefficient vector is β =

-10 0 10 20

SNR (dB)

-3

-2

-1

M
S
E

(d
B
)

SL
S-EN
SR-EN

(a) β(1)

-10 0 10 20

SNR (dB)

-0.5

0

0.5

1

1.5

SL
S-EN
SR-EN

(b) β(2)

Fig. 2. MSE(β̂) vs. SNR for scaled lasso (SL), scaled elastic
net (S-EN), and square-root elastic net (SR-EN).

(1, . . . , 1,01×130)>, and the EN parameter is set to α = 0.9.
Three different values for λ are considered, namely λj =√

2j−1 log(p), j ∈ {1, 2, 3}. Table 1 tabulates the MSE(β̂),
the ratio of the estimated and true error scale, σ̂/σ, the mean
false positive rate (FPR), and the mean false negative rate
(FNR). The reported results are averages over 100 Monte-
Carlo trials. The standard deviation (×10) is given in the
parenthesis. Based on Table 1, λ2 =

√
2 log(p) appears to

be the best compromise giving the best estimates of the error
scale, and the best mean squared error. With the chosen EN
tuning parameter α = 0.9, the scaled EN performs the best.

Table 1. Results of example 3. The standard deviation (×10)
is given in the parenthesis.

MSE(β̂) σ̂/σ FPR FNR

SL
λ1 0.23 (0.7) 0.85 (1.7) 0.01 (0.1) 0.59 (0.8)
λ2 0.21 (0.6) 1.23 (2.1) 0.00 (0.0) 0.67 (0.8)
λ3 0.13 (0.2) 2.58 (2.9) 0.00 (0.0) 0.93 (0.6)

S-
EN

λ1 0.08 (0.2) 0.87 (1.7) 0.03 (0.2) 0.26 (1.0)
λ2 0.07 (0.1) 1.25 (2.0) 0.01 (0.1) 0.28 (1.2)
λ3 0.10 (0.2) 2.38 (2.4) 0.00 (0.0) 0.63 (1.8)

SR-
EN

λ1 0.18 (0.5) 0.79 (1.7) 0.02 (0.2) 0.49 (0.9)
λ2 0.14 (0.4) 1.11 (1.9) 0.00 (0.1) 0.51 (1.0)
λ3 0.11 (0.1) 2.21 (3.3) 0.00 (0.0) 0.71 (1.6)

5. DISCUSSION AND CONCLUSIONS

We proposed two EN extensions of the scaled lasso. The
methods were shown to outperform the scaled lasso in the
case of high correlations between the basis vectors as well
as to encourage the grouping effect. In future research, we
will investigate the theoretical properties of the scaled and
square-root EN estimators. The performance of the scaled
and square-root EN estimators are in general somewhat sen-
sitive to the magnitude of the coefficients and sparsity level,
which was also noted in [8] for the scaled lasso. For small
n, the performance of the scaled estimators depends on the
selected λ. This can be alleviated by choosing among a set of
tuning parameters.
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