
ADAPTIVE MATCHING PURSUIT FOR SPARSE SIGNAL RECOVERY
Tiep H. Vu, Hojjat S. Mousavi, Vishal Monga

The Pennsylvania State University, University Park, PA

ABSTRACT

Spike and Slab priors have been of much recent interest
in signal processing as a means of inducing sparsity in
Bayesian inference. Applications domains that benefit from
the use of these priors include sparse recovery, regression and
classification. It is well-known that solving for the sparse
coefficient vector to maximize these priors results in a hard
non-convex and mixed integer programming problem. Most
existing solutions to this optimization problem either involve
simplifying assumptions/relaxations or are computationally
expensive. We propose a new greedy and adaptive matching
pursuit (AMP) algorithm to directly solve this hard problem.
Essentially, in each step of the algorithm, the set of active
elements would be updated by either adding or removing one
index, whichever results in better improvement. In addition,
the intermediate steps of the algorithm are calculated via
an inexpensive Cholesky decomposition which makes the
algorithm much faster. Results on simulated data sets as well
as real-world image recovery challenges confirm the benefits
of the proposed AMP, particularly in providing a superior
cost-quality trade-off over existing alternatives.

1. INTRODUCTION

Over the past decade, sparsity has become one of the
most prevalent themes in signal processing applications. In
general, parsimony in signals describes the phenomenon
where high dimensional data can be expressed by only a few
measurements. Sparse models assume that a signal can be
efficiently represented as sparse linear combination of atoms
in a given or learned dictionary [1,2]. The presence of sparsity
in signals often enables us to provide efficient algorithms for
extracting relevant information from the underlying data and
is often a natural assumption in inverse problems with variety
of applications in image/signal classification [1,3], dictionary
learning [4–7], signal recovery [8–10], image denoising and
inpainting [11], etc.

A sparse reconstruction algorithm aims to recover a sparse
signal x ∈ Rp from a set of fewer linear measurements
y ∈ Rq (q � p) according to: y = Ax+n, where A ∈ Rq×p
is the measurement matrix and n ∈ Rq represents Gaussian
noise. Many solutions have been proposed for this problem
and they include sparsity promoting optimization problems
involving different regularizers such as `1 or `0 norms,
greedy (e.g. matching pursuit) algorithms [9, 12], Bayesian-
based methods [13, 14] or general sparse approximation
algorithms – SpaRSA [8], ADMM [15], etc. Many of these
sparse recovery methods have shown that adding structural

This work has been supported partially by the Office of Naval Research
(ONR) under Grant 0401531 UP719Z0 and NSF CAREER award to (V.M.).

constraints and prior information to the frameworks have
value in terms of representation purposes [2, 16] and often
leads to performance improvement. Introducing priors for
capturing sparsity as an example of Bayesian inference has
shown to be effective for signal recovery [17, 18]. Examples
of such priors in statistics and signal processing are Laplacian
[19], generalized Pareto [20], Spike and Slab [21], etc.
Amongst these priors, a well-suited sparsity promoting prior
is Spike and Slab prior which is widely used in Bayesian
inference [22–24]. In fact, it is acknowledged that Spike and
Slab prior is indeed the gold standard for inducing sparsity in
Bayesian inference [24].

In this paper in particular, we focus on Spike and Slab
priors, introduced by Yen et al. [25], where every coefficient
xi is modeled as a mixture of two densities as follows:

xi ∼ (1− wi)I(xi = 0) + wiPi(xi).

I(·) is the indicator function at zero (spike) and Pi (slab) is a
suitable prior distribution, e.g., Gaussian, for nonzero values
of xi. wi ∈ {0, 1} controls the activeness of xi.
Optimization Problem (Hierarchical Bayesian Framework):
As suggested by [20, 26], sparsity can be induced via a prior
maximization procedure in a Bayesian setup. In this work, we
employ Spike and Slab prior for inducing sparsity on x and
formulate a hierarchical Bayesian framework as in [10].

More precisely, the Bayesian formulation is as follows:

y|A,x,γγγ, σ2 ∼ N (Ax, σ2I),

x|γγγ, λ, σ2 ∼
p∏
i=1

γiN (0, σ2λ−1) + (1− γi)I(xi = 0),

γγγ ∼
p∏
i=1

Bernoulli(κi),

where N (.) represents the Gaussian distribution and γγγ is the
indicator variable for vector x, i.e., γi = 0 if xi is zero,
otherwise γi = 1. The parameter κi affects the sparsity
level of the x by separately controlling whether each indicator
variable γi is active or not.
The MAP estimation based on the above mentioned Bayesian
framework leads to the optimization problem below [10]:

(x∗, γγγ∗) = argmin
x,γγγ
‖y −Ax‖22+λ ‖x‖

2
2+

p∑
i=1

ρiγi, (1)

and ρi , σ2log(2πσ
2(1−κi)

2

λκ2
i

). Note that from this definition,
ρi may be negative (if κi is large enough).

This is a more general sparsity inducing optimization
problem than the ones containing only l0 or l1 regularizers

4331978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

and has broad applicability in recovery and regression
problems and is known to be a hard non-convex mixed integer
programming. In [3, 23, 25] simplifications are pursued by
assuming a common κ (ρ) for each coefficient, which reduces
the last term in (1) to ρ‖x‖0. Further, relaxation of the ‖x‖0 to
‖x‖1 leads to the well-known Elastic Net [18]. More recently
an iterative refinement solution is also proposed in [10] which
refines the solution at each step by considering a history of
solutions at previous iterations. The Main contributions
of this paper are as follows: 1) To directly solve the hard
non-convex problem in (1), we propose an adaptive matching
pursuit (AMP) procedure which is supported with theoretical
analysis that formally argues the effectiveness as well as
computational benefits of the algorithm. 2) The procedure can
be slightly modified to solve problems with non-negativity
constraints, which is often required in real-world applications.
3) We perform experimental validation on both simulated
data and a practical image recovery problem, that reveals
the merits of the proposed AMP; the practical findings also
support the aforementioned analytical results.

2. ADAPTIVE MATCHING PURSUIT

In this section, we propose a greedy solution for (1) by
adding/removing elements to/from the support of x. First,

let D =

[
A√
λI

]
and z =

[
y
0

]
with I ∈ Rp×p and 0 ∈ Rp×1

being the identity and zero matrices, we can rewrite (1) as:

(x∗, γγγ∗) = argmin
x,γγγ
‖z−Dx‖22 +

p∑
i=1

ρiγi. (2)

Note that we assume that each column of A has norm 1,
i.e. ‖ai‖22 = 1 and subsequently, ‖di‖22 = ‖ai‖22 + λ =
1 + λ, ∀i = 1, . . . , p. It is also crucial to note that, if we
know the true support of the signal, i.e. S = {i : γi 6= 0}, we
can easily find the solution of (2) by calculating:

xS = argmin
xS
‖z−DSx

S‖22⇒ DT
SDSx

S = wS (3)

and rS = z−DSx
S (residual generated by S),

where wS and DS are a sub-vector of w = DTy indexed
by S and a sub-matrix of D formed by collecting its columns
indexed by S, respectively. xS is the vector containing only
active coefficients of x indexed by S. The bijection S ↔ xS

implies that solving (2) is equivalent to finding the active
set S. This motivates us to utilize a greedy approach to
find the support set S and then infer the solution x. In
particular, an Adaptive Matching Pursuit (AMP) is proposed
to update the active set S at each step by either absorbing one
of the unselected indices into S or removing one of active
elements in S, whichever results in a larger decrease in the
cost function. Concretely, for a given S, we define:

σS =
∑
i∈S

ρi and g(S) = min
xS
‖z−DSx

S‖22 + σS . (4)

At each iteration, we calculate two "improvement" values:

US = min
i/∈S

g(S ∪ {i})− g(S), (5)

VS = min
j∈S

g(S\{j})− g(S). (6)

(5) is the decrease in cost function if selecting one of
unselected indices in the support and (6) is the decrease if
removing one already-selected index. If both US and VS
greater than or equal to 0, we can stop the algorithm since
no improvement is obtained. Otherwise, we compare US and
VS to update S by absorbing i (if US < VS) or removing j (if
US > VS). This procedure guarantees that the cost function
decreases after each iteration, and then, the algorithm will
eventually stop after finite iterations.

Nevertheless, the cost of calculating g(S ∪ {i}) and
g(S\{j}) is extremely high and this idea becomes hardly
practical. In order to significantly reduce the computation
cost while keeping our algorithm close to the idea above,
instead of exactly calculating US and VS , we aim to calculate
their competent upper bounds US and V S . The decision is
then made based on these approximated values to obtain Snew.
After that, xS

new
and rSnew are calculated precisely before

moving to the new iteration. The following lemmas support
AMP in initializing S and choosing US and V S .
Lemma 1: If ρi < 0, then i ∈ Ŝ – the optimal active set.

Proof: Suppose that i /∈ Ŝ. Let rŜ = z−DŜx
Ŝ , we have:

g(Ŝ ∪ {i})
by (4)
≤ ‖rŜ − xidi‖22 + σŜ + ρi

= g(Ŝ) + dTi dix
2
i − 2rTŜdixi + ρi

= g(Ŝ) + (1 + λ)x2i − 2rTŜdixi + ρi. (7)

Let h(x) = (1+λ)x2−2rTŜdix+ρi, we observe that h(x)
is continuous and limx→∞ h(x) = +∞ and h(0) = ρi < 0.
Then, there exists xi 6= 0 such that ρi < h(xi) < 0.
Combining this with (7), we have:

g(Ŝ ∪ {i}) ≤ g(Ŝ) + h(xi) < g(Ŝ).

In other words, Ŝ ∪ {i} generates a lower cost than Ŝ
does, which contradicts the assumption that Ŝ is the optimal
solution. The contradiction suggests that i must be in Ŝ . �

By using Lemma 1, we can initialize S0 = {i : ρi < 0}.

Lemma 2: US ≤ min
i/∈S

{
ρi −

(rTSdi)
2

1 + λ

}
, US . (8)

Proof: Since (7) holds for every xi, we have:

g(S ∪ {i}) ≤g(S) + min
xi

{
ρi + (1 + λ)x2i − 2rTSdixi

}
=g(S) + ρi −

(rTSdi)
2

1 + λ
. (9)

Since (9) holds for every i /∈ S, inequality (8) is true. �

4332

Lemma 3:

VS ≤ min
j∈S

{
(1 + λ)(xSj)

2 + 2dTj rSx
S
j − ρj

}
, V S . (10)

where xSj is the element of xS corresponding to index j ∈ S.
Proof: For any j ∈ S,

g(S) = ‖rS + djx
S
j − djx

S
j ‖22 + σS\{j} + ρj

= ‖rS + djx
S
j ‖22 + σS\{j}+

+ (1 + λ)(xSj)
2 + ρj − 2dTj (rS + djx

S
j)x
S
j

≥ g(S\{j})− (1 + λ)(xSj)
2 − 2dTj rSx

S
j + ρj . (11)

Combining (11) and (6) we can conclude (10). �

From Lemma 2 and Lemma 3, we can consider US and
V S as good approximations of US and VS and update the
support set S based on those. It is worth to note here that
calculating US and V S requires low computations.

After obtaining updated S, we have to find xS using
(3) where we present a computationally cheap solution for
that. Let DT

SDS = LSLTS be the Cholesky decomposition
of the symmetric positive definite matrix DT

SDS where
LS is a low triangular matrix. Then, we can rewrite (3)
as LSLTSx

S = wS . Subsequently, xS can be updated
by solving two equations LSu = wS and LTSx

S = u,
consecutively. These two equations are simply solved by
forward substitution and backward substitution, respectively,
thanks to the triangularity of LS . The remaining task now
is that given LS , how do we effectively obtain LS∪{i}
and LS\{j}? While the LS∪{i} update procedure is quite
classical, as far as we know, the LS\{j} update procedure has
not been widely addressed. Details of these two procedures
are given below:
1. Given LS , calculate LS∪{i}. This problem has
been tackled in [27]. Specifically, by writing DS∪{i} =[
DS di

]
, we have:

LS∪{i}L
T
S∪{i} = DT

S∪{i}DS∪{i}

=

[
DT
SDS DT

Sdi
dTi DS dTi di

]
=

[
LSLTS DT

Sdi
dTi DS 1 + λ

]
.

If v is the solution of LSv = DT
Sdi via forward substitution,

then we can easily infer:

LS∪{i} =

[
LS 0

vT
√
1 + λ− vTv

]
. (12)

2. Given LS , calculate LS\{j}. Suppose that: DT
SDS =

=

L11 0 0
lT21 l22 0
L31 l32 L33

︸ ︷︷ ︸

LS

LT
11 l21 LT

31
0 l22 lT32
0 0 LT

33

︸ ︷︷ ︸

LT
S

=

C11 c12 C13

cT12 c22 cT32
C31 c32 C33

 ,

where [cT12, c22, c
T
32] and [cT12, c22, c

T
32]

T are the row and
column corresponding to the removed index j. By writing:

Algorithm 1 AMP algorithm for solving problem (1)

function (x∗, γγγ∗) = AMP(y,A, λ,ρρρ).

1. D =

[
A√
λI

]
and z =

[
y
0

]
2. Initialize S = {i : ρi < 0} and LS : LSLT

S = DT
SDS .

% if S = ∅, then LS = [].
while true do

3. Solve u : LSu = wS then solve xS : LT
Sx
S = u.

4. Update residual: rS = z−DSx
S .

5. Calculate: [US , i] = min
i/∈S

{
ρi −

(rTSdi)
2

1 + λ

}
.

6. Calculate V S :

[V S , j] = min
j∈S

{
(1 + λ)(xSj)

2 + 2dT
j rSxj − ρj

}
.

7. Decide
if min(US , V S) ≥ 0 then break the while loop.
else if US < V S then

Insert index: S = S ∪ {i} and update LS by (12).
else Remove index: S = S\{j} and update LS by (14).
end if

end while
8. OUTPUT: S ⇒ γγγ∗; xS ⇒ x∗

end function

DT
S\{j}DS\{j} =

[
C11 C13

C31 C33

]
=

[
L11 0
L31 L33

]
︸ ︷︷ ︸

LS\{j}

[
LT11 LT31
0 LT33

]
︸ ︷︷ ︸

LT
S\{j}

,

we obtain:

C11 = L11L
T
11 = L11L

T
11 ⇒ L11 = L11, (13)

C13 = L11L
T
31 = L11L

T
31 ⇒ L31 = L31,

C33 = L31L
T
31 + l32l

T
32 + L33L

T
33 = L31L

T
31 + L33L

T
33,

⇒ L33L
T
33 = L33L

T
33 + l32l

T
32.

Note that since Cholesky decomposition is unique we can
obtain (13). Also since l32 is a vector, l32lT32 is a rank-one
matrix. Therefore, L33 can be obtained quickly from L33

and l32 using rank one update for the Cholesky decomposition
[28] and we obtain:

LS\{j} =

[
L11 0
L31 L33

]
. (14)

Altogether, the AMP algorithm is presented in Algorithm 1.
Remark: Problem (1) with non-negativity constraint can
also be solved by slightly modifying Step 3 and Step 5 of
Algorithm 1. In Step 3, xS is instead solved via: xS =
arg min

xS�0
‖z − DSx

S‖22; while in Step 5, the alternative is:

[US , i] = mini/∈S
{
ρi − (max{rTSdi, 0})2/(1 + λ)

}
. The

non-negative quadratic programming in Step 3 can be solved
by an ADMM [15] procedure as proposed in [29] which can
also benefit from our Cholesky decomposition to make it
computationally cheap1.

1Details of this procedure will be discussed in our future work.

4333

20 40 60 80 100 120

10−1

100

101

True sparsity level

Running time (s) (log scale)

20 40 60 80 100 120

10−4

10−2

True sparsity level

MSE vs. x0 (log scale)

20 40 60 80 100 120
0

0.2

0.4

True sparsity level

Cost

20 40 60 80 100 120
0

0.2

0.4

True sparsity level

Cost

20 40 60 80 100 120

90

95

100

True sparsity level

Support Match vs. x0 (%)

NNOMP Elastic-Net SparSA ICR AMP

Fig. 1: Comparison of (from left to right): running time, mean squared error (MSE), cost function and Support Match (SM)
obtained by each method versus sparsity level of x0 with non-negativity constraint (p = 512, q = 256).

Table 1: Comparison of methods for p = 512, q = 256.

Average CoSaMP E-NET SpaRSA ICR AMP
Time (s) 1.1E0 7.9E-2 2.2E-1 2.9E1 1.6E-1
MSE 3.0E-4 4.5E-3 5.4E-4 3.1E-3 6.1E-5
Cost - - 1.6E-1 2.1E-1 9.5E-2
SM (%) 93.52 85.55 93.87 83.79 97.32

3. EXPERIMENTAL RESULTS

To illustrate the effectiveness of our AMP algorithm, we
apply it to sparse recovery problems in two different
scenarios: i) simulated data and ii) a real-world image
recovery problem. Comparisons are made against state-of-
the-art alternatives: 1) CoSaMP [30] / NNOMP [31] 2 ; 2)
Elastic Net (E-NET) [18] 3) SpaRSA [8] and 4) ICR [10].
Simulated data: We set up a typical experiment for sparse
recovery as in [25, 32] with a randomly generated Gaussian
matrix A ∈ R256×512 and a sparse vector x0 ∈ R512 with
100 non-zeros. Based on A and x0, we form the observation
vector y ∈ R256 according to the additive noise model with
σ = 0.01: y = Ax0 + n. Table 1 reports the experimental
results (averages of 100 trials with different A,x0 and n) for
this problem. As can be seen from Table 1, AMP outperforms
the competing methods in many different aspects. AMP runs
almost two hundred times faster than ICR and seven times
faster than CoSaMP. Results in the second row of Table 1
reveal that the AMP solution is the closest to the “ground
truth” x0 in terms of mean square error (MSE). In terms of the
cost function, we compare AMP with two other methods, ICR
and SpaRSA, which solve the same optimization problem (1).
The third row confirms that AMP achieves the lowest cost
function (by more than one order of magnitude). Finally, we
use “support match” (SM) to measure how much the support
of each solution matches to that of x0. It is evident that AMP
provides significantly higher support match (SM = 97.32%)
than other state-of-the-art methods. Next, in order to see
how each method performs in the presence of non-negativity
constraints, we perform one more experiment with sparse

2CoSaMP for unconstrained OMP, NNOMP for non-negative OMP.

Original

AMP

ICR

SpaRSA

NNOMP

E-NET

M
S
E S

M

Image | Support

1
.1
E
-3 9

5
.7
9

2.
1E

-3

93.88

1.
7E

-2

89.82

4.
2E

-3

80.74

4.
9E

-2

71.43

M
S
E S

M

Image | Support

1
.2
E
-3

9
6
.6
8

2.
8E

-3

94.77

9.
9E

-2

83.29

2.
9E

-3

87.24

1.
2E

-2

69.01

M
S
E S

M

Image | Support

6
.9
E
-4

9
6
.0
5

7.
1E

-4

95.79

6.
3E

-3

92.35

3.
0E

-3

78.44

1.
8E

-3

71.81

M
S
E S

M

Image | Support

1
.7
E
-3

9
5
.7
9

4.
1E

-3

94.64

7.
3E

-2

84.82

2.
8E

-3

86.73

1.
4E

-2

70.15

Fig. 2: Examples of reconstructed images from MNIST
dataset using different methods. In each pair of images: left
is the original image x0 (for the first row) or the reconstructed
image (for other rows), right is its “support” image. Numbers
on the left are MSEs and on the right are Support Matches.

data that is naturally non-negative and vary the sparsity level
of x0 from 10 to 120 and compare the running time, MSE,
optimal cost function and SM of different methods. Results
are shown in Figure 1. Similar trends can be seen in this figure
where AMP requires less running time than ICR does while
it consistently outperforms others in the remaining aspects.
It is worth to mention that AMP and ICR obtain almost the
identical cost which is better than what SpaRSA achieves.
Image recovery: Next, we apply the different sparse recovery
algorithms to real data for image reconstruction. We work
with the well-known handwritten digit images MNIST [33].
The dataset contains 60,000 digit images (0 to 9) of size
28 × 28. Since most of pixels in each image are inactive
(0), each image is naturally sparse. The experiment is set
up such that a vectorized sparse signal x ∈ R784×1 is to
be reconstructed from a smaller set of random measurements
y. We randomly generate a Gaussian matrix A ∈ R350×784.
For each signal, we add a Gaussian noise n with σ = 0.03.
Recovered images and their supports are demonstrated in
Figure 2 along with the corresponding MSE and Support
Match. Clearly, AMP and ICR outperform other methods
with slightly better but much faster results provided by AMP.

4334

4. REFERENCES

[1] J. Wright, Allen Y Yang, Arvind Ganesh, Shankar S
Sastry, and Yi Ma, “Robust face recognition via sparse
representation,” IEEE Trans. on Pattern Analysis and Machine
Int., vol. 31, no. 2, pp. 210–227, 2009.

[2] P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar,
“C-HiLASSO: A collaborative hierarchical sparse modeling
framework,” IEEE Trans. on Signal Processing, vol. 59, no.
9, pp. 4183–4198, 2011.

[3] U. Srinivas, Y. Suo, Minh Dao, V. Monga, and T. D Tran,
“Structured sparse priors for image classification,” IEEE
Transactions on Image Processing, vol. 24, no. 6, pp. 1763–
1776, 2015.

[4] F. Pourkamali Anaraki and S. M. Hughes, “Compressive K-
SVD,” in Proc. IEEE Int. on Conf. Acoustics, Speech, and
Signal Processing. IEEE, 2013, pp. 5469–5473.

[5] T. H. Vu, H. S. Mousavi, V. Monga, UK Rao, and G. Rao,
“DFDL: Discriminative feature-oriented dictionary learning
for histopathological image classification,” Proc. IEEE Int.
Symp. Biomed. Imag., pp. 990–994, 2015.

[6] T. H. Vu, H. S. Mousavi, V. Monga, UK Rao, and G. Rao,
“Histopathological image classification using discriminative
feature-oriented dictionary learning,” IEEE Transactions on
Medical Imaging, vol. 35, no. 3, pp. 738–751, March, 2016.

[7] T. H. Vu and V. Monga, “Learning a low-rank shared
dictionary for object classification,” Proc. IEEE Conf. on
Image Processing, pp. 4428–4432, 2016.

[8] S. J. Wright, R. D. Nowak, and M. AT Figueiredo, “Sparse
reconstruction by separable approximation,” IEEE Trans. on
Signal Processing, vol. 57, no. 7, pp. 2479–2493, 2009.

[9] J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE Trans.
on Info. Theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[10] H. S. Mousavi, V. Monga, and T. D. Tran, “Iterative convex
refinement for sparse recovery,” IEEE Signal Processing
Letters, vol. 22, no. 11, pp. 1903–1907, 2015.

[11] M. Elad and M. Aharon, “Image denoising via sparse and
redundant representations over learned dictionaries,” IEEE
Trans. on Im. Processing, vol. 15, no. 12, pp. 3736–3745, 2006.

[12] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast
approach for overcomplete sparse decomposition based on
smoothed norm,” IEEE Trans. on Signal Processing, vol. 57,
no. 1, pp. 289–301, 2009.

[13] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,”
IEEE Trans. on Signal Processing, vol. 56, no. 6, pp. 2346–
2356, 2008.

[14] X. Lu, Y. Wang, and Y. Yuan, “Sparse coding from a Bayesian
perspective,” Neural Networks and Learning Systems, IEEE
Transactions on, vol. 24, no. 6, pp. 929–939, 2013.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and
Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[16] U. Srinivas, Y. Suo, Minh Dao, V. Monga, and T. D Tran,
“Structured sparse priors for image classification.,” in Proc.
IEEE Conf. on Image Processing, 2013, pp. 3211–3215.

[17] R. Jenatton, J-Y Audibert, and F. Bach, “Structured variable
selection with sparsity-inducing norms,” The Journal of
Machine Learning Research, vol. 12, pp. 2777–2824, 2011.

[18] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” Journal of the Royal Stat. Society: Series
B (Stat. Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[19] S.D. Babacan, R. Molina, and A.K. Katsaggelos, “Bayesian
compressive sensing using laplace priors,” IEEE Trans. on
Image Processing, vol. 19, no. 1, pp. 53–63, 2010.

[20] V. Cevher, P. Indyk, L. Carin, and R. G. Baraniuk, “Sparse
signal recovery and acquisition with graphical models,” Signal
Processing Magazine, IEEE, vol. 27, no. 6, pp. 92–103, 2010.

[21] T. J. Mitchell and J. J. Beauchamp, “Bayesian variable
selection in linear regression,” Journal of the American
Statistical Association, vol. 83, no. 404, pp. 1023–1032, 1988.

[22] H. Ishwaran and J. S. Rao, “Spike and Slab variable selection:
frequentist and Bayesian strategies,” Annals of Statistics.

[23] M. R. Andersen, O. Winther, and L. K. Hansen, “Bayesian
inference for structured Spike and Slab priors,” in Advances in
Neural Information Processing Systems, 2014, pp. 1745–1753.

[24] M. Lázaro-gredilla and M. K. Titsias, “Spike and Slab
variational inference for multi-task and multiple kernel
learning,” in Advances in neural information processing
systems, 2011, pp. 2339–2347.

[25] T. J. Yen et al., “A majorization–minimization approach to
variable selection using Spike and Slab priors,” The Annals of
Statistics, vol. 39, no. 3, pp. 1748–1775, 2011.

[26] V. Cevher, “Learning with compressible priors,” in Advances
in Neural Information Processing Systems, 2009, pp. 261–269.

[27] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient
implementation of the K-SVD algorithm using batch
orthogonal matching pursuit,” CS Technion, vol. 40, no. 8, pp.
1–15, 2008.

[28] M. Seeger, “Low rank updates for the Cholesky
decomposition,” Tech. Rep., 2004.

[29] D. Boley, “Local linear convergence of the alternating
direction method of multipliers on quadratic or linear
programs,” SIAM Journal on Optimization, vol. 23, no. 4, pp.
2183–2207, 2013.

[30] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal
recovery from incomplete and inaccurate samples,” Applied
and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301–
321, 2009.

[31] A. M Bruckstein, M. Elad, and M. Zibulevsky, “On the
uniqueness of nonnegative sparse solutions to underdetermined
systems of equations,” IEEE Transactions on Information
Theory, vol. 54, no. 11, pp. 4813–4820, 2008.

[32] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[33] Y. LeCun, C. Cortes, and Burges C. J.C., “MNIST dataset,”
http://yann.lecun.com/exdb/mnist/, Accessed:
2016-08-30.

4335

