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ABSTRACT

This paper studies the estimation of the delay and Doppler
parameters of the sub-Nyquist radars. By formulating the
delay-Doppler estimation as the low-rank matrix recovery, we
propose an atomic norm minimization-based estimation ap-
proach. With the recovered low-rank matrix, we determine
and pair the delay and Doppler parameters of the radar targets.
Numerical simulations demonstrate the superior performance
of the proposed approach, as compared to the state-of-the-art
approaches.

Index Terms— Delay-Doppler estimation, sub-Nyquist
radar, compressive sensing, atomic norm, super-resolution

1. INTRODUCTION

In classical radar systems, we usually first sample the radar
echoes by analog-to-digital conversion (ADC) systems and
then process the sampled echoes in digital domain. When
applied to wideband radar systems, these schemes require
high-rate ADCs which in turn result in large dataflow and
high cost and power consumption. To overcome these prob-
lems, radar scientists recently establish the concept of sub-
Nyquist radars [1]. Different from the classical radars, the
sub-Nyquist radars sample the radar echoes by analog-to-
information conversion (AIC) systems [2–6]. Due to its
low sampling rate, the sub-Nyquist radar is endowed with
a number of implementation advantages. In particular, we
can establish wide/ultra-wide band radar systems which are
impossible by the current ADC techniques.

However, the sub-Nyquist samples obtained from AICs
are different from the Nyquist samples. The classical process-
ing methods cannot be directly applied for the sub-Nyquist
radar processing and new methodology is expected to be es-
tablished. Several methods have been developed recently. A
large class of methods is based on the discretization of the
delay-Doppler plane and the compressed sensing (CS) recov-
ery theory is used to estimate the delay and Doppler param-
eters of the radar targets [7–9]. A problem with this class
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of methods is the basis mismatch effect [10], which great-
ly deteriorates the estimation performance. Another class of
methods is to define parametrized dictionaries and compres-
sive parametric estimation techniques are employed to esti-
mate the target parameters [11, 12]. In general, the second
class methods can solve the mismatch problem and has high
estimation performance.

In this paper, we develop a new parametric estimation ap-
proach. The basic idea is to describe the radar target charac-
teristics as a low-rank matrix and the AIC system as a linear
mapping from the low-rank matrix to a sampling vector. The
low-rank matrix, named as the delay-Doppler matrix (DDM)
in this paper, is parameterized by the delay-Doppler param-
eters with its rank no more than the number of the target-
s. Therefore, the delay-Doppler estimation can be formulat-
ed as the low rank DDM recovery problem. By exploiting
the inherent structure of DDM, we reveal that the estimation
of the unknown delay-Doppler parameters can be regarded
as a two-dimensional (2D) line spectrum estimation problem.
Conventional 2D approaches [13, 14] can be used to find the
estimates of the delay and Doppler parameters. Instead of do-
ing by these approaches, this paper develops an atomic norm
minimization-based approach [15–17] which has been shown
to have high-resolution performance recently. Toward this,
we first define an atom as a rank-one parametrized matrix and
then recover the low-rank DDM via atomic norm minimiza-
tion with a semi-definite matrix formulation. After recovering
the DDM, we determine and pair the delay and Doppler pa-
rameters of the radar targets. Simulations demonstrate that the
proposed method significantly improves the delay-Doppler
estimation performance.

Before proceeding to the main context, we recall sever-
al related works. The work in [18] applies the atomic norm
minimization-based theory to the delay-Doppler estimation,
but it does not address the sub-Nyquist sampling and impos-
es constraints on the radar transmit waveforms. The recent
works [19, 20] study the 2D line spectrum estimation under
the framework of atomic norm. The differences in our work
are that (1) a new atom is defined with which the optimiza-
tion problem size is greatly reduced and (2) a pairing method
to pair the delay and Doppler parameters is presented. Then
the proposed method is computationally more efficient.
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2. SUB-NYQUIST RADAR MODEL AND PROBLEM
FORMULATION

2.1. Signal Model

In this paper, we consider a radar transceiver that transmits a
pulse train

s(t) =

N−1∑
n=0

gn(t− nT ), 0 ≤ t ≤ NT, (1)

where N is the number of transmitted pulses, T is the pulse
repetition interval (PRI), and gn(t) is a known pulsed signal
with its pulse-width Tp (Tp < T ) and bandwidth B.

The target scene is composed of K non-fluctuating point
targets satisfying the stop-and-hop assumption [21], where K
is generally unknown. Then the received signal can be written
as:

x(t) =
N−1∑
n=0

xn(t), (2)

where xn(t) is the radar echo corresponding to the n-th pulse
(n = 1, 2, · · · , N − 1),

xn(t) =

K∑
k=1

αkgn(t− nT − τk)ej2πνknT . (3)

Throughout, we assume that the radar is operated in an u-
nambiguous time-frequency region, i.e., |νk| < 1/2T and
0 < τk < T .

2.2. Sub-Nyquist Radar

The AIC considered in this paper is shown in Fig.1, which
consists of a random spectrum-spreading signal p(t), a low-
pass filter h(t) and a low-rate ADC. The structure is a typical
complex random demodulator [2] and the basic component in
many other AICs [3, 4, 6].

During the n-th pulse interval, the AIC outputs the sample
yn[m] = yn(mTcs),

yn(t) =

∫ (n+1)T

nT

h(τ)p(t− τ)xn(t− τ)dτ, (4)

where Tcs is the sampling interval. The aim of this pa-
per is to detect and resolve the K delay-Doppler pairs
{τk, νk}Kk=1 from the set of sampling vectors {yn}N−1n=0 with
yn = [yn[0], yn[1], · · · , yn[M − 1]]T .

To simplify the analysis, we make the following assump-
tions:

• The random spectrum-spreading signal is a T -periodic
signal p(t) =

∑Lp

l=−Lp
ρle

jπlt/T .

• The low-pass filter h(t) is ideal with bandwidth Bcs/2.

• The sampling interval Tcs = 1/Bcs = T/M , where M
is an integer.

( )y t

( )p t

( )x t
A/D( )h t

 y m

Fig. 1. The structure of the AIC.

3. DELAY-DOPPLER ESTIMATION VIA ATOMIC
NORM MINIMIZATION

3.1. Frequency-Domain Representation of Sub-Nyquist
Radar

Denote the continuous-time Fourier transforms of yn(t),
xn(t) and gn(t) as ỹn(f), x̃n(f) and g̃n(f), respectively.
Under the assumptions in 2.2, ỹn(f) can be computed as

ỹn(f) =

L0∑
l=−L0

ρlx̃n(f − lfp), f ∈ [−Bcs/2, Bcs/2], (5)

where fp = 1/T , L0 = d(B +Bcs)T/2e. With (3), we have
x̃n(f) as

x̃n(f) =

K∑
k=1

αke
j2πνknT g̃n(f)e

−j2πfτk . (6)

Here we remove the fixed phase due to the delay nT .
Define ỹn[m] as the spectrum samples of ỹn(f) at the

sampling frequencies f(m) = Bcs/2−mfp. Then we get

ỹn[m] =

L0∑
l=−L0

ρlx̃n(f(m−l))

=

L2∑
l=L1

ρm−lx̃n(f(l)),

(7)

where L1 = max{−L0, b(Bcs − B)T/2c} and L2 =
min{M − 1 + L0, b(Bcs +B)T/2c}.

Let ỹn = [ỹn[0], ỹn[1], · · · , ỹn[M − 1]]T . Substituting
(6) into (7), we have the following matrix representation:

ỹn = PGnW(τ)BVT (ν)en, (8)

where en denotes the n-th column of the N -dimension iden-
tity matrix, Gn and B are two diagonal matrices,

Gn = diag([g̃n(f(L1)), · · · , g̃n(f(L2))]), (9)

B = diag([β1, · · · , βK ]), (10)

with βk = αke
−j2πf(L1)τk , the matrix P ∈ CM×L is a partial

Hankel matrix with L = L2 − L1 + 1,

P =


ρ1−L1

ρ2−L1
. . . ρ1+L2

ρ2−L1
ρ2−L1

. . . ρ2+L2

...
...

. . .
...

ρM−L1 ρM+1−L1 . . . ρM+L2

 . (11)
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And W(τ) = [w(fpτ1), · · · ,w(fpτK)] ∈ CL×K and
V(ν) = [v(ν1T ), · · · ,v(νKT )] ∈ CN×K are two Van-
dermonde matrices with

w(θ) = [1, ej2πθ, · · · , ej2π(L−1)θ]T , (12)

v(θ) = [1, ej2πθ, · · · , ej2π(N−1)θ]T . (13)

Let θk, ϑk ∈ (−1/2, 1/2] with θk = fpτk − 1/2 and
ϑk = −νkT . Then (8) can be equivalently represented as

ỹn = MnW(θ)BVH(ϑ)en

= MnXen,
(14)

where Mn = PGndiag([1,−1, · · · , (−1)L−1]), X =
W(θ)BVH(ϑ). Let mH

m,n be the m-th row of the matrix
Mn. We can represent the m-th element of ỹn as

ỹn[m] =

K∑
k=1

βkm
H
m,nw(θk)v

H(ϑk)en

= Tr
(
enmH

m,n

K∑
k=1

βkw(θk)v
H(ϑk)

)
= 〈X,mm,neHn 〉,

(15)

where 〈A,B〉 , tr(BHA). Then the output of AIC system
in N PRIs can be expressed as,

ỹ = B(X) (16)

where ỹ = [ỹT0 , ỹ
T
1 , · · · , ỹTN−1]T ∈ CMN , and B is the lin-

ear operator mapping the matrix X to the vector ỹ.
It is noted that the delay and Doppler parameters of the

radar targets are completely contained in the matrix X. For
convenience, we call the matrix X as the delay-Doppler ma-
trix (DDM). In sparse radar scenarios, i.e., K � min{L,N},
X is a low-rank matrix. From (16), we can know that the lin-
ear map B depicts the AIC system, which maps the DDM to
the AIC output vector. Therefore, our problem is equivalent
to recovering the low-rank DDM X from the linear mapping
(16). In the following subsection, we recover the low-rank
matrix via the atomic norm minimization.

3.2. Delay-Doppler Matrix Recovery via Atomic Norm
Minimization

To recover the DDM, we define a set of atoms as:

A , {A(θ, φ) = ejφw(θ)vH(ϑ) : θ, ϑ ∈ T, φ ∈ S},

where θ = {θ, ϑ}, T , (−1/2, 1/2] and S , (0, 2π]. Then
the atomic l0 norm of the matrix X is defined as the smallest
number of atoms in A that can express X:

‖X‖A,0 = inf

{
K : X =

K∑
k=1

ckA(θk, φk), ck > 0

}
(17)

The following theorem states that the atomic l0 norm ‖X‖A,0
can be cast as an equivalent rank minimization problem.

Theorem 1 ‖X‖A,0 defined in (17) equals the optimal value
of the following rank minimization problem:

min
u1∈CL,u2∈CN

rank(M),

s.t. M =

[
toep(u1) X

XH toep(u2)

]
≥ 0,

(18)

where toep(u) denotes the Toeplitz matrix with uT as its first
row.

The proof relies on the Vandermonde decomposition of
Toeplitz matrix and is omitted here due to the space limitation.

It immediately follows from Theorem 1 that the DDM re-
covery can be cast as the following rank minimization prob-
lem:

min
u1∈CL,u2∈CN ,X

rank(M),

s.t. M =

[
toep(u1) X

XH toep(u2)

]
≥ 0,

ỹ = B(X).

(19)

It is noted that the rank minimization is nonconvex. One
way is to approximately compute it through the reweighted
strategy [22]. In this paper, we relax rank(M) to trace(M)
and solve it by convex optimization toolbox CVX [23]. In
solving the optimization problem, we have to optimize an L+
N -dimensional vector [uT1 ,u

T
2 ]
T and an L×N -dimensional

matrix X. Compared with the atomic norm-based approach-
es in [19, 20], which generally require to optimize an LN -
dimensional vector along with the matrix X, the problem size
is largely reduced. Therefore, the problem here is more com-
putationally efficient.

3.3. Delay-Doppler Parameters Estimation and Pairing

By solving the relaxed version of problem (19), we get the
optimal matrix M∗ and two Toeplitz matrices toep(u∗1) and
toep(u∗2). At the same time, the optimal K∗, i.e., the number
of delay-Doppler pairs, can be also determined from the rank
of M∗. By performing the Vandermonde decomposition of
toep(u∗1) and toep(u∗2), we can acquire two sets of frequen-
cies {θ∗1 , θ∗2 , · · · , θ∗K1

} and {ϑ∗1, ϑ∗2, · · · , ϑ∗K2
} (K1,K2 ≤

K∗), which corresponds to different delay and Doppler pa-
rameters, respectively. Now our problem is to determine the
K∗ delay-Doppler pairs from the two sets.

It is noted that the rank-K∗ matrix M∗ can be decom-
posed as

M∗ =

[
U1

U2

] [
U1

U2

]H
, (20)

where U1 ∈ CL×K∗
and U2 ∈ CN×K∗

. On the other hand,
the Toeplitz matrices toep(u∗1) and toep(u∗2) can also be u-
niquely decomposed as:

toep(u∗1) = W1Σ1W
H
1 , (21)
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toep(u∗2) = V2Σ2V
H
2 , (22)

where W1 = [w(θ∗1),w(θ∗2), · · · ,w(θ∗K1
)] and V1 =

[v(ϑ∗1),v(ϑ
∗
2), · · · ,v(ϑ∗K2

)]. Since toep(u∗1) = U1U
H
1

and toep(u∗2) = U2U
H
2 , there exist O1 ∈ CK∗

1×K
∗

and O2 ∈ CK∗
2×K

∗
satisfying U1 = W1Σ

1/2
1 O1 and

U2 = V2Σ
1/2
2 O2. Then X can be represented as

X = W1Σ
1/2
1 OΣ

1/2
2 VH

2 , (23)

where the matrix O = O1O
H
2 ∈ CK∗

1×K
∗
2 establishes

the relationship between the two frequency sets. There-
fore, we use it to pair the delays and Doppler frequen-
cies. According to (23), the matrix O can be estimated as
O = Σ

−1/2
1 W†

1XV†2Σ
−1/2
2 , where (·)† denotes the Moore-

Penrose pseudoinverse. In the ideal case, a nonzero element
oij in O demonstrates there exits a pair of {θ∗i , ϑ∗j}. In prac-
tice, we can select the positions of the K∗ largest elements in
O to determine the K∗ delay-Doppler pairs.

4. SIMULATIONS

We now present simulation results of the proposed delay-
Doppler estimation algorithm for sub-Nyquist radar system.
The radar transmits a linear frequency modulated signal
with bandwidth B = 25MHz and pulse-width Tp = 2µsec
and samples the radar echoes at one quarter of the Nyquist
rate, i.e., Bcs = 6.25MHz. Other parameters used are PRI
T = 4µsec and number of pulses N = 50. Target delays
and Doppler frequencies are randomly spread in the unam-
biguous region with uniform distribution. We compared the
proposed method (denoted as “ANM”) with the Doppler fo-
cusing (DF) [8] and the discretization-based method (denoted
as “HiRes”) in [7] (where the discrete grid is chosen as one-
fifth of the Nyquist bin). We take the relative root mean
square error (RMS), which is normalized to the Nyquist bin,
as a metric to evaluate the performance.

Figs.2 and 3 demonstrate the RMS error performance of
the different methods for various K and SNR values, respec-
tively. From Fig.2 we see that the proposed method is superior
to the other methods for the different K values. As shown in
Fig.3, the proposed method improves the delay and Doppler
estimation performance significantly when SNR is above 5dB
and the RMS error decreases as SNR increases. However, due
to the off-the-grid effect, the performance of the other meth-
ods keeps unchanged as SNR increases from 0dB to 50dB.

5. CONCLUSION

In this paper, we propose a sub-Nyquist radar delay-Doppler
estimation approach in the recent super-resolution framework
[15]. With the recovered DDM via the atomic norm mini-
mization, the proposed approach can effectively resolve the
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Fig. 2. RMS error of delay and Doppler estimation versus the
number of targets, K, with SNR=20dB.

−10 0 10 20 30 40 50
10−4

10−2

100

102

SNR(dB)
R

M
S

Time−Delay Estimation

 

 

−10 0 10 20 30 40 50

10−4

10−2

100

102

SNR(dB)

R
M

S

Doppler Estimation

 

 

ANM
DF
HiRes

Fig. 3. RMS error of delay and Doppler estimation versus
SNR with K = 5.

delay and Doppler parameters with high accuracy. Simula-
tions show the performance advantages of the proposed ap-
proach. As noted in (1), we do not impose any constraint on
the waveforms and therefore, the proposed approach is also
applicable to the pulse diversity radar systems.
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