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ABSTRACT

The generalized approximate message passing (GAMP) algorithm
under the Bayesian setting shows significant advantages in recov-
ering under-sampled sparse signals from corrupted observations.
Compared to conventional convex optimization methods, it has a
much lower complexity and is computationally tractable. Under
the GAMP framework, the sparse signal and the observation are
viewed to be generated according to some pre-specified probability
distributions in the input and output channels. However, the pa-
rameters of the distributions are usually unknown in practice and
need to be decided. In this paper, we propose an extended GAMP
algorithm with built-in parameter estimation (PE-GAMP). Specifi-
cally, PE-GAMP treats the parameters as unknown random variables
with simple priors and jointly estimates them with the sparse signals
along the recovery process. Sparse signal recovery experiments
confirm PE-GAMP’s convergence behavior and show that its perfor-
mance matches the oracle GAMP algorithm that has the knowledge
of the true parameter values.

Index Terms— Sparse signal recovery, approximate message
passing, parameter estimation, belief propagation, compressive sens-
ing.

1. INTRODUCTION

Sparse signal recovery (SSR) plays the critical role in the Compres-
sive Sensing (CS) framework [1–4]. Besides signal recovery, it also
lays the foundation for applications such as dictionary learning [5],
sparse representation-based classification [6], etc. Specifically, SSR
tries to recover the sparse signal x ∈ RN given a M × N sensing
matrix A and a measurement vector y = Ax + w ∈ RM , where
M < N and w ∈ RM is the unknown noise introduced in this
process. Although the problem itself is ill-posed, perfect recovery
is still possible provided that x is sufficiently sparse and A is inco-
herent enough [1]. Lasso [7], a.k.a l1-minimization, is one of most
popular approaches proposed to solve this problem:

arg min
x

‖y −Ax‖22 + γ‖x‖1 , (1)

where ‖y − Ax‖22 is the data-fidelity term, ‖x‖1 is the sparsity-
promoting term, and γ balances the trade-off between them.

From a probabilistic view, Lasso is equivalent to a maximum
likelihood (ML) estimation of the signal x under the assumption that
the entries of x are i.i.d. distributed following the Laplace distribu-
tion p(xj) ∝ exp(−λ|xj |), and those of w are i.i.d. distributed
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following the Gaussian distribution p(wi) ∝ exp (−w2
i/2θ). Let

z = Ax, we have p(yi|x) ∝ exp (−(yi − zi)2/2θ). The ML es-
timation is then arg maxx p(x,y), which is the same as (1).

Under the Bayesian setting it is possible to design efficient iter-
ative algorithms to compute either the maximum a posterior (MAP)
or minimum mean square error (MMSE) estimate of the signal x.
Most notable among them are the “message-passing” based algo-
rithms [8–11]. They perform probabilistic inferences on the corre-
sponding factor graph using Gaussian and/or quadratic approxima-
tions of loopy belief propagation (loopy BP), hence the name mes-
sage passing [12]. Loopy BP has two variants: sum-product mes-
sage passing for the MMSE estimate of x and max-sum message
passing for the MAP estimate of x. Approximate message passing
(AMP) is proposed based on a quadratic approximation of max-sum
message passing [8–10]. It has low complexity and can be used to
find solutions of Lasso accurately. In fact, AMP is able to match
the performance of theoretical Lasso in noiseless signal recovery ex-
periments [8]. Its empirical convergence is guaranteed in the large
system limit forA with i.i.d Gaussian entries [10].

Various methods based on the above AMP framework has been
proposed to perform sparse signal recovery [11,13,14]. [13,14] treat
each AMP iteration as a signal denoising process and introduces the
denoiser into the AMP algorithm. In [11], a generalized version of
the AMP algorithm (GAMP) is proposed to work with essentially
arbitrary input and output channel distributions. It can approximate
both the sum-product and max-sum message passings using only
scalar estimations and linear transforms. The parameters {λ,θ} in
the input and output channels are usually unknown, and need to be
decided for the AMP/GAMP algorithm. Various methods have been
proposed to estimate the parameters for the GAMP algorithm. For
example, the Expectation-Maximization (EM) algorithm [15] can be
used to perform parameter estimation [16–19].

1.1. Main Contributions

In this paper, we propose an extension to the GAMP framework by
treating the parameters λ,θ as unknown random variables with sim-
ple prior distributions and estimating them jointly with the signal x
under the same framework: PE-GAMP. This enables us to compute
the following posterior distributions of the parameters directly from
loopy belief propagation.

• Sum-product message passing: The “marginal” posterior
distributions {p(λ|y), p(θ|y)} can be obtained.

• Max-sum message passing: The “joint” posterior distribu-
tion {p(λ, x̃|y), p(θ, x̃|y)} can be obtained, where x̃ are the
values that maximizes the joint posterior distribution.
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Fig. 1: The factor graph for the proposed PE-GAMP. “�” rep-
resents the factor node, and “©” represents the variable node.
λ = {λ1, · · · , λL} and θ = {θ1, · · · , θK} are the parameters.
x = [x1, · · · , xN ]T is the sparse signal.

For the sum-product message passing, if the input and output
channel distributions p(x|λ), p(y|z,θ) are simple enough so that
the integration involved in the message passing process can be com-
puted, the parameter estimation will be automatically taken care of
and no special treatments are needed. However, in practice the chan-
nel distributions are usually complicated, and the integration usually
doesn’t have closed-form solutions. In this case, we can compute the
MMSE or MAP estimates of the parameters λ,θ using Dirac delta
approximations of the posterior distributions and use them to sim-
plify the message passing process. For the max-sum message pass-
ing, the maximization problem involving multiple variables can be
efficiently solved by using the approximate maximizing parameters.

Previous EM based parameter estimation can only be used with
sum-product message passing, since it relies on the marginal distri-

bution p(x|y, λ̂
(t)
, θ̂

(t)
) to compute the expectation of the log like-

lihood log p(x,y;λ,θ). While our proposed PE-GAMP could be
applied to both sum-product and max-sum message passings, which
give MMSE and MAP estimations of the signal respectively. Using
the popular input and output channel distributions adopted by the
sparse signal recovery model, we can also show that the recovery
performance of the proposed PE-GAMP is able to match the oracle-
GAMP that knows the true parameter values. A longer version of
this paper with more details and experiments is given in [20].

2. GAMP WITH BUILT-IN PARAMETER ESTIMATION

The generalized factor graph for the proposed PE-GAMP framework
that treats the parameters as random variables is shown in Fig. 1.
Inference tasks performed on the factor graph rely on the “messages”
passed among connected nodes of the graph. Here we adopt the same
notations used by [11]. Take the messages being passed between the
factor node Φm and the variable node xn for example, ∆Φm→xn is
the message from Φm to xn, and ∆Φm←xn is the message from xn
to Φm. Both ∆Φm→xn and ∆Φm←xn can be viewed as functions
of xn. In the following section 2.1 and 2.2, we give the messages
being passed on the generalized factor graph in “log” domain for the
sum-product message passing algorithm and the max-sum message
passing algorithm respectively.

2.1. Sum-product Message Passing

Sum-product message passing is used to compute the marginal distri-
butions of the random variables in the graph: p(x|y), p(λ|y), p(θ|y).
In the following, we first present the sum-product message updates

equations in the (t+ 1)-th iteration.

∆
(t+1)
Φm→xn = const + log

∫
x\xn,θ

[
Φm (ym,x,θ)

× exp
(∑

j 6=n ∆
(t)
Φm←xj +

∑
v ∆

(t)
Φm←θv

)] (2a)

∆
(t+1)
Φm←xn = const + ∆

(t+1)
Ωn→xn +

∑
i6=m ∆

(t+1)
Φi→xn (2b)

∆
(t+1)
Ωn→xn = const + log

∫
λ

Ωn(xn,λ) · exp
(∑

u ∆
(t)
Ωn←λu

)
(2c)

∆
(t+1)
Ωn←xn = const +

∑
i ∆

(t+1)
Φi→xn , (2d)

where x\xn denotes the sequence obtained by removing xn from
x, Φm(ym,x,θ) = p(ym|x,θ) and Ωn(xn,λ) = p(xn|λ). Simi-
larly, we can write the message updates involving the variable nodes
λl, θk as follows:

∆
(t+1)
Ωn→λl

= const + log

∫
xn,λ\λl

[
Ωn(xn,λ)

× exp
(

∆
(t+1)
Ωn←xn +

∑
u6=l ∆

(t)
Ωn←λu

)] (3a)

∆
(t+1)
Ωn←λl

= const +
∑
j 6=n ∆

(t+1)
Ωj→λl

+ log p(λl) (3b)

∆
(t+1)
Φm→θk = const + log

∫
θ\θk,x

[
Φm (ym,x,θ)

× exp
(∑

j ∆
(t)
Φm←xj +

∑
v 6=k ∆

(t)
Φm←θv

)] (3c)

∆
(t+1)
Φm←θk = const +

∑
i 6=m ∆

(t+1)
Φi→θk + log p(θk) , (3d)

where p(λl), p(θk) are the pre-specified priors of the parameters.
Let Γ(xn),Γ(λl),Γ(θk) denote the factor nodes in the neighbor-
hood of the variable nodes xn, λl, θk respectively, we can sum up all
the messages passed on to the variable nodes:

∆(t+1)
xn = ∆

(t+1)
Ωn→xn +

∑
Φm∈Γ(xn) ∆

(t+1)
Φm→xn (4a)

∆
(t+1)
λl

= log p(λl) +
∑

Ωn∈Γ(λl)
∆

(t+1)
Ωn→λl

(4b)

∆
(t+1)
θk

= log p(θk) +
∑

Φm∈Γ(θk) ∆
(t+1)
Φm→θk (4c)

We then have the marginal distributions: p(xn|y) ∝ exp(∆
(t+1)
xn ),

p(λl|y) ∝ exp(∆
(t+1)
λl

), p(θk|y) ∝ exp(∆
(t+1)
θk

). The MMSE
estimate of x is as follows:

x̂n = E [xn|y] =
∫
xn
xnp(xn|y) . (5)

2.2. Max-sum Message Passing

Max-sum message passing is used to compute the “joint” MAP esti-
mates of the random variables in the graph:

(x̂, λ̂, θ̂) = arg max
x,λ,θ

p(x,λ,θ|y) . (6)

For the max-sum message passing, the message updates from the
variable nodes to the factor nodes are the same as the aforementioned
sum-product message updates, i.e. (2b,2d,3b,3d). We only need to
change the message updates from the factor nodes to the variable
nodes by replacing “

∫
” in (2a,2c,3a,3c) with “max”. Take ∆

(t+1)
Ωn→λl

for example, we will have

∆
(t+1)
Ωn→λl

= const + max
xn,λ\λl

[
log Ωn(xn,λ)

+∆
(t+1)
Ωn←xn +

∑
u6=l ∆

(t)
Ωn←λu

] (7)
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Note: For the sum-product message passing, PE-GAMP naturally
produces MMSE estimation of x. Based on p(xn|y), we can also
compute the MAP estimation of x: x̂n = arg maxxn p(xn|y). For
the max-sum message passing, PE-GAMP naturally produces the
“joint” MAP estimation of x. Unfortunately, it is not possible to
obtain any meaningful MMSE estimation of x in this case.

3. PARAMETER ESTIMATION

The priors p(λl), p(θk) on the parameters are usually chosen to be
some simple distributions. If we do not have any knowledge on how
λ,θ are distributed, we can fairly assume a uniform prior and treat
p(λl), p(θk) as constants. Since λl, θk are treated as random vari-
ables in the PE-GAMP framework, they will be jointly estimated
along with the signal x in the message-updating process.

3.1. Sum-product Message Passing

Take λl for example, in the PE-GAMP, we propose to approximate
the underlying distribution p(t+1)

Ωn←λl
(λl|y) ∝ exp(∆

(t+1)
Ωn←λl

) using
Dirac delta function:

p
(t+1)
Ωn←λl

(λl|y) ≈ δ
(
λl − λ̂(t+1)

Ωn←λl

)
, (8)

where δ(·) is the Dirac delta function, λ̂(t+1)
Ωn←λl

can be computed
using either the MAP or MMSE estimation:

1. MAP estimation of λl: λ̂
(t+1)
Ωn←λl

:= arg maxλl ∆
(t+1)
Ωn←λl

.

2. MMSE estimation of λl: λ̂
(t+1)
Ωn←λl

:= E[λl|∆(t+1)
Ωn←λl

]. It is

the mean of the distribution 1
C exp(∆

(t+1)
Ωn←λl

), where C is a
normalizing constant.

The formulations for the rest parameters can be derived sim-
ilarly. The reason behind the choice of Dirac delta approxima-
tion of p(t+1)

Ωn←λl
(λl|y) is its simplicity, it amounts to the scalar

MAP or MMSE estimation of λl from the posterior distribution
p

(t+1)
Ωn←λl

(λl|y). Other approximations often make it quite diffi-

cult to compute the message ∆
(t+1)
Ωn→λl

in (3a) due to the lack of
closed-form solutions.

3.1.1. Updated Messages under Dirac Delta Approximation

The updated messages from the factor nodes to the variable nodes
are then:

∆
(t+1)
Φm→xn = const + log

∫
x\xn

[
Φm

(
ym,x, θ̂

(t)

Φm

)
× exp

(∑
j 6=n ∆

(t)
Φm←xj

)] (9a)

∆
(t+1)
Ωn→xn = const + log Ωn(xn, λ̂

(t)

Ωn
) (9b)

∆
(t+1)
Ωn→λl

= const + log

∫
xn

[
Ωn
(
xn, λl, λ̂

(t)

Ωn
\λ̂(t)

Ωn←λl

)
× exp

(
∆

(t+1)
Ωn←xn

)] (9c)

∆
(t+1)
Φm→θk = const + log

∫
x

[
Φm

(
ym,x, θk, θ̂

(t)

Φm
\θ̂(t)

Φm←θk

)
× exp

(∑
j ∆

(t)
Φm←xj

)]
,

(9d)

where λ̂
(t)

Ωn
, θ̂

(t)

Φm
are scalar estimates from the previous t-th itera-

tion.

3.2. Max-sum Message Passing

Take λl for example, a straightforward way to solve the problems
in (7) is to iteratively maximize each varaible in {xn,λ\λl} while
keeping the rest fixed until convergence. However, it is inefficient
and quite unnecessary. In practice, one iteration would suffice.
Hence we propose to use the following solutions as the approximate
maximizing parameters:

λ̂
(t+1)
Ωn←λl

:= arg max
λl

log Ωn
(
x̂(t)
n , λl, λ̂

(t)

Ωn
\λ̂(t)

Ωn←λl

)
+ ∆

(t)
Ωn←λl

.

(10)

The updated messages from the factor nodes to the variable nodes
can be obtained by replacing “

∫
” in (9) with “max” like before.

4. NUMERICAL RESULTS

For the sparse signal recovery task, we usually assume the sparse
signal x and the noise w are generated from the following popular
input and output channels:

• Bernoulli-Gaussian (BG) Input Channel: p(xj |λ) = (1 −
λ1)δ(xj) + λ1N (xj ;λ2, λ3).

• Laplace Input Channel: p(xj |λ) = λ1
2

exp (−λ1|xj |).

• Additive White Gaussian Noise (AWGN) Output Channel:
p(wi|θ) = N (wi; 0, θ1).

Using the above channels we can create two sparse signal recovery
models: 1) BG+AWGN; 2) Laplace+AWGN.

Discussion: For the model with BG input channel, max-sum mes-
sage passing cannot be used to perform the inference task on the
sparse signal since the x̃ that maximizes the messages ∆

(t+1)
Ωn→λl

would be 0. p(x, λ̂, θ̂|y) from sum-product message passing can-
not produce any useful MAP estimation of x for the same reason. In
this case, we can only use sum-product message passing to perform
MMSE estimation of x.

For the model with Laplace input channel, although max-sum
message passing can be used to obtain the MAP estimation of x, it
cannot be used to compute the MAP estimation of λ1, since the λ̂1

that maximizes (10) is always ∞ and the maximizing θ̂1 is always
0. On the other hand, sum-product message passing can be used to
compute the MMSE estimation and MAP estimation of xn based
on p(xn|y), however they doesn’t have the best recovery perfor-
mance. Here we propose to employ sum-product message passing to
compute the “marginal” MAP estimates {λ̂1, θ̂1} using the marginal
posterior distributions p(λ1|y), p(θ1|y), as opposed to the MAP es-
timates in (11). {λ̂1, θ̂1} can then be used as the inputs to max-sum
message passing to obtain the MAP estimate of x. This essentially is
the Lasso mentioned at the beginning of this paper, except now that
we have provided a way to automatically estimate the parameters.

In this case, the two recovery models mentioned earlier both rely
on sum-product message passing to perform parameter estimation.
“MMSE parameter estimation” is often quite difficult to compute. In
this paper we will focus on using the “MAP parameter estimation”
approach to estimate the parameters. Using Dirac delta approxima-
tion we can compute MAP estimations of the parameters as follows:

λ̂
(t+1)
Ωn←λl

= arg max
λl

∆
(t+1)
Ωn←λl

(11a)

θ̂
(t+1)
Φm←θk = arg max

θk
∆

(t+1)
Φm←θk . (11b)
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Fig. 2: “PE” denotes the proposed PE-GAMP, “EM” denotes the EM-GAMP, “oracle” denotes the oracle-GAMP; “BG” denotes the recovery
model with Bernoulli-Gaussian input channel, “LP” denotes the recovery model with Laplace input channel (i.e. Lasso). (a) The phase
transition curves (PTC) in the noiseless case; (b) The boxplots showing the SNR (dB) of the recovered sparse signal x̂ under noisy conditions.

Specifically, we will use the line search method to find the maximiz-
ing λ̂(t+1)

l , θ̂
(t+1)
k , which requires the computation of the derivatives

of ∆
(t+1)
Ωn←λl

,∆
(t+1)
Φm←θk with respect to λl, θk. A detailed formulation

of the MAP parameter estimation can be found in [20].

Since we don’t have any knowledge about the priors of λ,θ, we
fairly choose the “uniform” prior for each parameter.The recovery
performance of the proposed PE-GAMP will be compared with EM-
GAMP [16] and the oracle GAMP algorithms that already know the
true parameters.

4.1. Noiseless Sparse Signal Recovery

We first perform noiseless sparse signal recovery experiments and
draw the empirical phase transition curves (PTC) of PE-GAMP, EM-
GAMP [16] and oracle-GAMP. We fixN = 1000 and vary the over-
sampling ratio σ = M

N
∈ [0.05, 0.1, 0.15, · · · , 0.95] and the under-

sampling ratio ρ = S
M
∈ [0.05, 0.1, 0.15, · · · , 0.95], where S is

the sparsity of the signal, i.e. the number of nonzero coefficients.
For each combination of σ and ρ, we randomly generate 100 pairs
of {x,A}. The nonzero entries of the sparse signal x ∈ RN are
i.i.d. Gaussian N (0, 1). A is a M × N random Gaussian matrix
with normalized and centralized rows. Given the measurement vec-
tor y = Ax and the sensing matrix A, we try to recover the signal
x. If ε = ‖x− x̂‖2/‖x‖2 < 10−3, the recovery is considered to be
a success. Based on the 100 trials, we compute the success rate of
the recovery for each combination of σ and ρ.

For the recovery model with BG input channel, the true param-
eters λ,θ are known and can be directly used by the oracle-GAMP.
However, for the recovery model with Laplace input channel, the
parameter λ1 are unknown since the entries of x are not actually
generated according to a Laplace distribution. Here we will perform
maximum likelihood estimation of λ1 based on the true signal x and
use it for the oracle-GAMP.

The results of the two recovery models are shown in Fig. 2(a).
The PTC curve is the contour that correspond to the 0.5 success rate
in the domain (σ, ρ) ∈ (0, 1)2, it divides the domain into a “success”
phase (lower-right) and a “failure” phase (upper-left). Specifically,
EM-GAMP by [16] doesn’t have an implementation for the recovery
model with Laplace input channel, we can only show the results for

the model with BG input channel. We can see that the performance
of PE-GAMP matches that of the oracle-GAMP in both models. PE-
GAMP does the job fairly well in estimating the parameters λ,θ and
recovering the sparse signals x.

4.2. Noisy Sparse Signal Recovery

We next try to recover the sparse signal x from a noisy measurement
vector y. We would like to see how the proposed PE-GAMP behaves
when an increasing amount of noise is added to the measurement.
Specifically, S = 200,M = 500, N = 1000 are fixed, and y is
generated: y = Ax + νw. ν > 0 controls the amount of noise
added to y, the entries of w are i.i.d Gaussian N (0, 1). For each
ν, we randomly generate 100 triples of {x,A,w}. The signal to
noise ratio (SNR) is used to evaluate the performances and the box
plots of the results are shown in Fig. 2(b). For the recovery model
with BG input channel, we can see that the proposed PE-GAMP
is able to perform as well as the oracle-GAMP in recovering noisy
sparse signals. For the recovery model with Laplace input channel,
the proposed PE-GAMP performs slightly worse than the oracle-
GAMP, this is probably due to the mismatch between the assumed
distribution and the actual distribution of x.

5. CONCLUSION AND FUTURE WORK

We proposed a message passing algorithm with built-in parameter
estimation to recover under-sampled sparse signals. The parame-
ters are treated as random variables with pre-specified priors, their
posterior distributions can then be directly approximated by loopy
belief propagation. This allows us to perform MAP and MMSE es-
timations of the parameters and to update them during the message
passing process to recover sparse signals. In this paper we mainly
focus on MAP parameter estimation and perform numerical experi-
ments on a series of noiseless and noisy sparse signal recovery ex-
periments. The experiments show that the proposed PE-GAMP is
able to match the performance of the oracle GAMP that knows the
true parameters. In the future we would like to explore the MMSE
estimation of the parameters and apply the proposed PE-GAMP on
real datasets.
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