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ABSTRACT
In this paper we consider the problem of channel allocation for
users who access a common channel using OFDMA. The spectrum
is divided into subchannels and we assume that the bandwidth of
each subchannel is smaller than the coherence bandwidth. This
leads to correlations between the channel coefficients for each user.
We model these correlated channels as an m-dependent sequence
and generate an interference game at random, according to some
marginal fading distribution. Performance is measured by the sum
of achievable rates. Using a novel analysis of the random pure NE
of the game, we prove that even for correlated channels the M-
frequency selective interference game, suggested in previous work,
has only Nash equilibria that exhibit good performance with high
probability, asymptotically with the number of users. This game
is the basis for an asymptotically optimal and fully distributed
OFDMA channel allocation algorithm, presented in simulations.

Index Terms— Resource Allocation, Game Theory, Nash Equi-
librium, Random Games, Correlated Channels

I. INTRODUCTION
Channel allocation in large-scale networks is a major chal-

lenge [1]. The task of assigning each user a different channel
is traditionally performed by a central entity in the network. In
ad-hoc networks, or simply large-scale networks, this approach
is infeasible. This task becomes even more involved when the
designer wants to allocate each user a channel that specially suits
him, because channel state information has to be acquired for all
users. For this reason, many works have tried to solve the problem
of channel allocation distributedly [2], [3], [4]. Game theory is an
excellent choice for an analytical foundation for such distributed
algorithms [5], [2], [6], [7], [8].

In previous work [9] we suggested a game formulation for
the channel allocation problem called the M-frequency selective
interference game (M-FSIG). We generated the interference game
at random according to some fading distribution, and proved that
the probability that the M-FSIG only exhibits optimal pure Nash
Equilibria (NE), in the sum-rate sense, approaches one as the
number of users approaches infinity. Using this game, any algorithm
that can converge to some pure NE will have asymptotically optimal
performance. We proposed a modified version of the fictitious play
algorithm [10] as such a fully distributed algorithm that requires
no communication at all between users.

Our previous results for the M-FSIG assumed i.i.d. channel
coefficients. Although this model is convenient to analyze, it is
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inaccurate for many communication scenarios since the channel
coefficients may be correlated. Correlations between channel co-
efficients of different frequency bands can occur if the distance
between their carrier frequencies is smaller than the coherence
bandwidth of the channel. If the frequency bands all have the
same bandwidth, this distance is equal to this bandwidth. One such
significant case is Orthogonal Frequency Division Multiplexing
Access (OFDMA) [11], which is used in LTE in the allocation
of resource blocks (see [12]).

This means that the channel coefficients of close enough fre-
quency bands are indeed not statistically independent, but those of
frequency bands that are separated by more than the coherence
bandwidth can be considered independent. The notion of m-
dependent sequences captures this effect well [13]. Furthermore,
it allows for a generalization of the term “channel” to time-slots
in addition to frequency bands, since they can be thought of as
highly-correlated (or identical) channels.

In this paper we extend the random pure NE analysis of [9] to
the case of m-dependent channel coefficients.

This paper is organized as follows. In Section II we formulate
the problem, and in section III we generalize the NE existence
results of the M-FSIG to the case of m-dependent channels. This
generalization enables the application of the M-FSIG as the basis
for a fully distributed OFDMA channel allocation algorithm, and
simulations of such an algorithm are presented in Section IV.
Section V concludes this paper.

II. PROBLEM FORMULATION
Consider a wireless network consisting of N transmitter-receiver

pairs (users) and N channels. Each user forms a link between his
transmitter and receiver using a single channel. This assumption is
for simplicity alone. Our game theoretic formulation allows for a
straight forward generalization to multiple channels per user. One
can separate the notions of user and player, by thinking of b distinct
games that take place simultaneously. Each user can subscribe
a player for each of these games, so we have b games of N
players and N channels in each. Our results apply to each of these
games independently, and also suggest that this separation entails
no asymptotic loss compared to a single game with N players and
bN channels, as long as b is fixed with respect to N .

The channel between each transmitter and receiver is Gaussian
frequency-selective and we assume that each frequency band is
smaller than the coherence bandwidth of the channel. We also
assume that the coherence time is significantly larger than the
convergence time of our proposed algorithm, so that the channel
gains can be considered static in our analysis.
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The channel coefficients are modeled as N3 random variables
- one for each channel, each transmitter and each receiver. The
coefficient between user i’s transmitter and user j’s receiver in
channel k is denoted hi,j,k. We assume that hi,j,1, ..., hi,j,N are
identically distributed for each i, j = 1, .., N , but not independent.
However, in order to obtain a non-vanishing transmission rate for
each user we expect the bandwidth of a single frequency band
to be non-decreasing with N . Hence, the coherence bandwidth of
the channel is at most m times larger than the bandwidth of a
frequency band, for some integer m that is fixed with respect to
N . For this reason, only frequency bands with index k2 such that
|k2 − k1| ≤ m are correlated with the k1-th frequency band. Based
on this reasoning, we assume instead that hi,j,1, ..., hi,j,N are m-
dependent for some integer m ≥ 0.

Definition 1. A random process {Xi} is said to be m−dependent
if and only if for each i, j such that |i− j| > m the variables Xi
and Xj are statistically independent.

We also assume that hi1,j1,k and hi2,j2,k are independent for
each k = 1, ..., N if i1 6= i2 or j1 6= j2. Note that N2 of these
coefficients serve as channel coefficients between a transmitter and
receiver pair and are denoted for convenience by hi,k for user i in
channel k. The other N2(N − 1) coefficients serve as interference
coefficients between transmitters and unintended receivers.

Each user has some preferred order of the N channels. Due
to the independence of the channel coefficients between users,
these preference lists are independent between users. Note that this
preference order only considers the absolute value of the channel
coefficient and not the interference. We denote by hi,(N−q+1) the q-
th best channel coefficient for user i (so hn,(1) is the worst channel).

We assume that each user has perfect channel state information
(CSI) of all his N channel coefficients, which he can achieve
using standard estimation techniques. In addition, we assume that
each user can sense the exact interference he experiences in each
channel. Nevertheless, users do not have any knowledge concerning
the channel coefficients of other users or the specific interference
coefficients. There is no central entity of any sort that knows the
channel gains of all users.

Our global performance metric is the sum of achievable rates
while treating interference as noise. Denote by a the allocation
vector (strategy profile), such that ai = k if user i is using channel
k. We want to maximize the following performance function over
all possible allocations

W (a) =

N∑
i=1

log2

(
1 +

Pi|hi,ai |2

N0 + Ii,ai (a−i)

)
(1)

where N0 is the Gaussian noise variance which is assumed to
be the same for all users, Pi is user i’s transmission power and
Ii,k (a−i) =

∑
j|aj=k

|hj,i,k|2Pj is the interference user i experiences

in channel k.
Our approach to the distributed channel allocation problem

formulated above is game theoretic. This means we suggest a game
formulation, and prove it only has asymptotically optimal NE. This
guarantees that any algorithm that can converge to some pure NE
will exhibit a close to optimal performance, obviating the need for
equilibria selection. We suggest a modified version of fictitious play
as such an algorithm that requires no communication between users
to converge, and converges very fast.

III. THE M-FREQUENCY SELECTIVE INTERFERENCE
GAME FOR CORRELATED CHANNELS

In this section we introduce the M-Frequency Selective Interfer-
ence Game (M-FSIG). This game was shown to only have good
NE for i.i.d channels, with a probability that approaches one as the
number of users approaches infinity. Here we aim to generalize this
result to the case of m-dependent channels. This game is a result of
a utility design that is specially crafted for the problem of channel
allocation [9]. The purpose of this design is to maximize the global
performance (given by (1)) of the worst pure NE of the game. For
each player, this designed utility is greater than zero only for his
M best channels, and be equal for them.

Definition 2. The M-Frequency-Selective Interference Game
(M-FSIG) is a normal-form game with parameter M > 0 and
N players, where each has the set Ai = {1, 2, ..., N} as a strategy
space. The utility function for player i is

ui (a) =

 log2

(
1 +

Pi|hi,(N−M+1)|
2

N0+Ii,ai(a−i)

)
|hi,ai |

|hi,(N−M+1)| ≥ 1

0 else
(2)

Note that maximizing ui (a) over Ai is equivalent to minimizing

Ii,ai (a−i) over the set Mi =

{
k | |hi,k|
|hi,(N−M+1)| ≥ 1

}
. The

following definition is needed for our proofs.

Definition 3. Define the tail quantile function as q̄X (p) =
F−1
X (1− p) = min {x |FX (x) ≥ 1− p}.

Next we prove that even if the channel coefficients are m-
dependent, there exists an increasing number of pure NE with
asymptotically optimal performance.

Theorem 4. Assume that {hi,j,k} are independent for different i, j
and hi,1, ..., hi,N are identically distributed and m-dependent for

each i, for some m > 0. Let Mi =

{
k | |hi,k|
|hi,(N−M+1)| ≥ 1

}
. If

the M-FSIG parameter is chosen such that MN ≥ (m+ 1) (3 +
ε) ln(N) for some ε > 0, then the probability there are at least
MN ! perfect matchings between users and channels, such that each
user i gets a channel from Mi, approaches one as N →∞.

Proof: Consider a random bipartite graph of the set of users
and the set of channels. A user node i is connected to all channels
in Mi so his degree is exactly MN . We want to lower bound the
probability that a channel is a good channel for user i, and by so
doing evaluate the minimum degree of a channel node. Denote L =

q̄X
(

MN
e(N+m+1)

)
and Xk = |hi,k|. We use the Fréchet inequality

to obtain

Pr (k ∈Mi) ≥ Pr

(
X(N−MN+1) ≤ L,Xk ≥ L

)
≥
(a)

Pr
(
X(N−MN+1) ≤ L

)
+ Pr (Xk ≥ L)− 1 (3)

where (a) follows because if Xk ≥ L and X(N−MN+1) ≤ L then
k ∈ MN . We want to find a lower bound for the first probability
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in (3). First invoke FN (x) =
∑N
k=1 I (Xk ≤ x) on both sides of

X(N−MN+1) > L to obtain

Pr
(
X(N−MN+1) > L

)
=

Pr

(
N −MN + 1 >

N∑
k=1

I (Xk ≤ L)

)
=

Pr

(
N∑
k=1

I (Xk > L) ≥MN

)
(4)

Now divide X1, ..., XN into the m + 1 disjoint sets
{X1, X2+m, ...} , ..., {Xm+1, X2+2m, ...} and define Yi,j =
Xj+(m+1)i for j = 1, ..,m + 1 and all i such that 1 ≤
j + (m+ 1) i ≤ N for some j. So for large enough N we
get

Pr

(
N∑
k=1

I (Xk > L) ≥MN

)

≤
(a)

Pr

(
m+1⋃
j=1

{ sj∑
i=0

I (Yi,j > L) ≥ MN

m+ 1

})

≤
(b)

(m+ 1) Pr

max
j
sj∑

i=0

I (Yi,1 > L) ≥ MN

m+ 1

 (5)

where

sj =


⌊

N
m+1

⌋
− 1 j > N −

⌊
N
m+1

⌋
(m+ 1)⌊

N
m+1

⌋
else

and (a) follows because some inner sum must be greater than MN
m+1

in order for the total sum to be greater than MN , and (b) from the
union bound. We can apply a concentration upper bound on the
last term, denoting the success probability of the corresponding
Bernoulli process Zi = I (Yi,1 > L) by p = 1 − FX (L) =

MN
e(N+m+1)

and S = max
j
sj + 1. According Theorem A.1.12 in

[14], for all N > 0 and β > 1

Pr

max
j
sj∑

i=0

Zi ≥ βpS

 ≤ (eβ−1β−β
)pS

. (6)

where here

β =

MN
m+1

MNS
e(N+m+1)

≥
(a)

MN
m+1

MN( N
m+1

+1)
e(N+m+1)

= e (7)

where (a) is due S = max
j
sj + 1 ≤ N

m+1
+ 1. We obtain

Pr

max
j
sj∑

i=0

Zi ≥
MN

m+ 1

 ≤
(a)

(
ee−1e−e

)S MN
e(N+m+1)

≤
(b)
e
− MN
e(m+1)

1−m+1
N

1+m+1
N (8)

where (a) is due to (6) and (7) and (b) due to S = max
j
sj ≥

N
m+1

− 1. If MN ≥ (m+ 1) (3 + ε) ln (N) for some ε > 0 then
by (4),(5) and (8) we conclude that for large enough N

Pr
(
X(N−MN+1) > L

)
≤ (m+ 1) e

− MN
e(m+1)

1−m+1
N

1+m+1
N

≤
(a)

(m+ 1) e−
(3+ε) ln(N)

3 =
m+ 1

N1+ ε
3

(9)

where (a) follows since for large enough N the inequality
1−m+1

N

1+m+1
N

≥ e
3

holds. Using the above bound on (3) we conclude
that for large enough N

Pr (k ∈Mi) ≥
(a)

MN

e (N +m+ 1)
− m+ 1

N1+ ε
3
≥ MN

3N
(10)

where (a) uses Pr (Xk ≥ L) = MN
e(N+m+1)

and (9). Since channel
coefficients of different users are independent, the probability that
the degree of vertex k is less than two is given by the binomial
distribution of the number of users who prefer channel k, with
p = Pr (k ∈Mi) ≥ MN

3N
, so we obtain

Pr (deg(k) < 2) ≤
(

1− MN

3N

)N
+N

MN

3N

(
1− MN

3N

)N−1

.

(11)
Using the union bound on the channel vertices we obtain

Pr
(

min
k

deg(k) < 2
)
≤

N

(
1− MN

3N

)N
+N

MN

3

(
1− MN

3N

)N−1

≤
(a)

Ne−
MN
3 +

3

2
N
MN

3
e−

MN
3 ≤

(b)

2 (m+ 1) (1 + ε
3
) ln(N) + 1

N (m+1)(1+ ε
3 )−1

(12)

Due to ln (1− x) ≤ −x for all x < 1, the inequality

ln
(

1− MN
N

)N
≤ −N MN

N
holds and so does

(
1− MN

N

)N
≤

e−MN which is used in (a), together with 1− MN
3N
≥ 2

3
. Inequality

(b) follows by assuming MN ≥ (m+ 1) (3 + ε) ln(N) with some
ε > 0 and using the monotonicity of Ne−

MN
3 +N MN

3
e−

MN
3 .

We conclude that Pr
(

min
k

deg(k) < 2
)
→ 0 as N → ∞. We

know from [15, Theorem 1] that given min
k

(deg(k)) ≥ 2, the
probability that a perfect matching exists approaches 1 as N →∞.
This also guarantees that at least MN ! such perfect matchings exist
(see [9]).

Now we turn to generalize the non-existence of bad equilibria to
m-dependent channels. This is based on the fact that all pure NE are
asymptotically almost a permutation between users and channels.

Definition 5. A shared channel is a channel that is chosen by more
than one user, and a sharing user is a user that chose a shared
channel.

Theorem 6. Assume that {hi,j,k} are independent for different i, j
and hi,1, ..., hi,N are identically distributed and m-dependent for
each i, for some m > 0. Suppose MN ≥ (m+ 1) (3 + ε) ln(N)
for some ε > 0. If a∗ is a pure NE of the M-FSIG with Nc sharing
users, then Nc

N
→ 0 in probability as N → ∞. Furthermore,

max
a∗∈Pe

Nc(a∗)
N

→ 0 in probability as N →∞, where Pe is the set

of pure NE.
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Proof: Denote the set of empty channels by E and its cardi-
nality by E. Note that E is large if the number of sharing users is
large, which means that the given strategy profile is far from being
a permutation. A necessary condition for a strategy profile to be
a pure NE is that no user wishes to switch to an empty channel.
Denote L = q̄X

(
MN

e(N+m+1)

)
and Xk = |hi,k|. Now observe that,

for user i, at least E
m+1

channels in E are independent. Denote their
set of indices by I. Hence

Pr

(⋃
k∈E

{Xk ≥ L}

))
≥

Pr

(⋃
k∈I

{Xk ≥ L}

))
=
(a)

1−
(

1− MN

e (N +m+ 1)

) E
m+1

(13)

where (a) is due to Pr (Xk ≥ L) = MN
e(N+m+1)

. We lower bound
the probability that user i desires no empty channel by

Pr (Mi ∩ E 6= ∅) ≥
(a)

Pr

(
X(N−M+1) ≤ L ,

⋃
k∈E

{Xk ≥ L}

)
≥
(b)

Pr
(
X(N−MN+1) ≤ L

)
+

(
Pr

(⋃
k∈E

{Xk ≥ L}

)
− 1

)
≥
(c)

1− (m+ 1) e
− MN

3(m+1) −
(

1− MN

e (N +m+ 1)

) E
m+1

(14)

where (a) is since if Xk ≥ L and X(N−MN+1) ≤ L then k ∈Mi

and (b) is the Fréchet inequality. Inequality (c) follows, for large
enough N , from the bounds in (9) and (13). Under the condition
that MN ≥ (m+ 1) (3 +ε) ln(N), the rest of this proof coincides
with the equivalent proof for i.i.d channels, described in [16]. It is
based on the fact that the probability that a strategy profile with
too many sharing users is a pure NE goes to zero as N →∞.

IV. SIMULATION RESULTS
In our simulations we used a Rayleigh fading network; i.e.
{|hi,j,k|} are Rayleigh random variables that are independent
for each different pair of i, j. For a specific pair of i and j,
hi,j,1, ..., hi,j,N were generated using the Extended Pedestrian A
model (EPA, see [17]) for the excess tap delay and the relative
power of each tap. The parameter m of their dependency is roughly
given by m ≥ TsN

50στ
where Ts is the duration of a symbol and

στ is the delay spread of the channel, which is 143[ns]. All
coefficients were normalized such that their second moment was
one, E

{∣∣|hi,j,k|2∣∣} = 1. Three realizations of the frequency bands
coefficients of a specific user for different values of m are depicted
in Fig. 1.

In Fig. 2 we present the convergence of the Modified Fictitious
Play (see [9] for details) with α = 0.5, in a single network
realization, for N = 128 and M = 25. The transmission powers
were chosen such that the mean SNR for each link, in the absence
of interference, was 20[dB]. Here we used Ts = 10−8 so m = 4.
Clearly, that convergence was very fast and occurred within 30
iterations. The ratio of the sum of achievable rates to that of an
optimal allocation was close to 1, and the ratio of the minimal
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Fig. 1. Realizations of the channels coefficients for different values
of m
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Fig. 2. Sum-rate and min-rate compared to the optimal permutation
allocation sum-rate for a single realization

achievable rate was also reasonable. Note that there were two
sharing users in the resulting pure NE.

We also simulated the effect of M on the convergence to a
pure NE. We generated 50 networks at random, and for each let
the users play with M = dc ln (K)e for c = 2, 3, 4, 5, 6, 7. As
expected by our proofs, there was a threshold phenomenon for
M . For c = 2, 3, 4 none of the dynamics converged whereas for
c = 5, 6, 7 all of them did, with fewer than 50 iterations. The mean-
rates for c = 5, 6, 7 were 4.03, 3.90, 3.88 and the minimal rates
were 1.30, 2.09, 2.05. Correlations between channel coefficients
decrease the multi-user diversity of the channels, which reduced
the mean-rate. On the other hand, fairness was enhanced thanks to
the similarity between channels.

V. CONCLUSION
We addressed the problem of channel allocation where each

user experiences correlations between the available channels. We
modeled these correlated channels as an m-dependent sequences.
We proved that even for m-dependent channels, a previously
suggested game, the M-FSIG, exhibits only asymptotically optimal
pure Nash equilibria, with a probability that approaches one as
the number of users approaches infinity. This makes it possible to
use a modified version of fictitious play as a fully distributed and
asymptotically optimal algorithm for OFDMA channel allocation.
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