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ABSTRACT

In this paper, we propose improvements to the Complete Ensem-
ble Empirical Mode Decomposition (CEEMD) aimed at the reso-
lution of closely-spaced Intrinsic Mode Functions (IMFs), repro-
ducible and consistent decompositions, reduction in estimation error,
numerical stability, and faster decompositions through fewer ensem-
ble trials. We focus on three areas to achieve these goals: 1) use of
complimentary masking signals applied at the IMF level, 2) use of
narrowband tones instead of white noise for masking signals, and 3)
ensuring a true IMF is obtained after ensemble averaging. We pro-
pose a numerically stable Instantaneous Frequency (IF) demodula-
tion approach that together with a previously-reported Instantaneous
Amplitude (IA) demodulation, allows estimation of the IA/IF param-
eters of the IMFs and hence a time-frequency representation. Using
biomedical signal examples, we compare our results with CEEMD
and Improved CEEMD (ICEEMD).

Index Terms— Signal analysis, Empirical mode decomposi-
tion, Biomedical signal processing

1. INTRODUCTION

In a prior publication [1], we proposed a signal model consisting of
a superposition of K complex, AM–FM components

z(t) ≡
K−1∑
k=0

ψk (t; ak(t), ωk(t), φk) (1)

where the component, in polar and rectangular forms, is given by

ψk(t; ak(t), ωk(t), φk) ≡ ak(t)ejθk(t) = sk(t) + jσk(t) (2)

and parameterized by the Instantaneous Amplitude (IA) ak(t), In-
stantaneous Frequency (IF) defined through the phase derivative

ωk(t) =
d

dt
θk(t), (3)

and the phase reference φk.
Practical estimation of the instantaneous parameters of the AM–

FM model in (1) is a two-step process. First, the signal must be
decomposed into a set of complex AM–FM components and sec-
ond, the instantaneous parameters {ak(t), ωk(t)} of each compo-
nent must be estimated, i.e. demodulation. Some of the most popular
AM–FM decomposition methods are Huang’s Empirical Mode De-
composition (EMD) and its variations [2]. When the Hilbert Trans-
form (HT) is used for the demodulation step, the resulting algorithm
is termed the Hilbert-Huang Transform (HHT) [2].

In [2], Huang proposed the original EMD algorithm which se-
quentially determines a set of Intrinsic Mode Functions (IMFs),
{ϕk(t)} via an iterative sifting algorithm. The Ensemble Empirical
Mode Decomposition (EEMD) [3] introduced ensemble averag-
ing in order to address the mode mixing problem via an additive
noise and an averaging of IMF estimates. The Complete EEMD
(CEEMD) was proposed to address some of the undesirable features
of EEMD by averaging at the IMF level as each IMF is estimated
rather than averaging at the conclusion of EEMD [4]. The Improved
CEEMD (ICEEMD) [5] was proposed to reduce the noise present in
each IMF estimate and to reduce the occurrence of spurious IMFs
as was observed with CEEMD. In addition, several improvements
to the sifting algorithm have also been proposed including those by
Rato [6]. In this paper, we propose new improvements to CEEMD
including 1) a modification to the ensemble averaging which guar-
antees that the average IMF is a true IMF [3] and 2) a change from
the additive noise used in ensemble averaging to a complimentary
pair of narrowband tones which we term “tone masking.”

In the context of the complex AM–FM model in (1), an IMF can
be considered as the real part of the complex AM-FM component in
(2), i.e. ϕk(t) = <{ψk(t)} = sk(t) when the signal under analysis,
x(t) = <{z(t)} [1]. In order to utilize the model in (1), the sec-
ond step of the process must parameterize the IMF similarly, i.e. the
IA/IF parameters must be estimated through demodulation of the
IMFs. Other demodulation alternatives to the HT, used in the HHT,
have been proposed to improve local behavior [6]. Rato proposed
an IA estimation which is consistent with the IMF definition [6].
In addition, Huang has examined numerous alternative demodula-
tion methods, including an iterative version of Rato’s IA estimation
followed by direct IF estimation. Unfortunately, this direct arctan
approach suffers from numerical instability [7]. In this paper, we
propose numerical stabilization techniques for Huang’s iterative IA
estimation and direct IF estimation algorithms. Finally, we incorpo-
rate the EMD improvements and proposed demodulation into a sin-
gle algorithm which gives good estimates for the IA/IF parameters
of the AM–FM model and hence a time-frequency representation.

This paper is organized as follows. In Section 2, we briefly re-
view the EMD algorithm, the CEEMD [4], and the ICEEMD [5].
In Section 3, we describe our proposed improvements to the fam-
ily of EMD algorithms as well as the demodulation procedure for
IA/IF estimation. In Section 4, we compare the decompositions of
example biomedical signals using the various approaches. Finally,
we conclude the paper in Section 5.

2. EMPIRICAL MODE DECOMPOSITION

The purpose of the sifting algorithm is to iteratively identify and
remove the trend from the signal, acting as a high pass filter. This
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process repeats to remove additional IMFs from the signal if they
exist. The resulting decomposition is complete and sparse [2, 8, 9].
As is well-known, the major problem with EMD is mode mixing [3,
4, 10]. One method to mitigate mode mixing is ensemble-averaging
ofϕk(t), which leads to EEMD [3]. EEMD utilizes zero-mean white
noise, w(t) to perturb the signal so an IMF may be tracked properly
over an ensemble average. EEMD is not without its disadvantages as
it is more computationally complex, loses the perfect reconstruction
property, propagates IMF estimation error, can result in inconsistent
numbers of IMFs across the trials, and the resulting set of averaged
IMFs {ϕ̄k(t)} are not necessarily IMFs [4].

Torres proposed CEEMD to address some of the issues with
EEMD [4]. CEEMD shifts the additive perturbation from the sig-
nal to the residue, r(t) which is then sifted (see Algorithm 1) at each
iteration. The resulting IMFs are then ensemble-averaged, prior to
estimation of the next IMF. CEEMD defines a procedure, EMDk(·),
which returns the kth IMF using EMD [4]; when the input is w(t), it
returns the kth masking signal. The result is fewer sifting iterations,
a smaller ensemble size, and recovery of the completeness property
of EMD to within the numerical precision of the computer [4].

Algorithm 1 Sifting Algorithm
1: procedure ϕ(t) = SIFT( r(t) )
2: while

∫
|r(t)|2dt/

∫
|e(t)|2dt < ε1 do

3: find all local maxima: up = r(tp), p = 1, 2, . . .
4: find all local minima: lq = r(tq), q = 1, 2, . . .
5: interpolate: u(t) = CublicSpline({tp, up})
6: interpolate: l(t) = CublicSpline({tq, lq})
7: e(t) = [u(t) + l(t)]/2.
8: r(t)← r(t)− αe(t).
9: end while

10: ϕ(t) = r(t)
11: end procedure

The ICEEMD further attempts to improve the performance of
CEEMD through a different approach to IMF estimation [5]. In the
versions of EMD described thus far, the sifting algorithm directly
estimates higher-frequency IMFs, i.e. “detail” from the residue. In
ICEEMD, the IMF is indirectly estimated as the difference between
the current residue and the average of its local means. By doing so,
the sifting algorithm is replaced by an operator, M(·), which pro-
duces the local mean of the signal that it is applied to. This poten-
tially reduces the amount of estimation error present in the IMFs and
in some cases eliminates spurious IMFs [5].

3. PROPOSED IMPROVEMENTS TO EMD AND IA/IF
ESTIMATION

3.1. Improvements to EMD

Beginning with CEEMD, we propose several improvements with the
following goals in mind: resolve closely-spaced IMFs, reproducible
decompositions, reduction in the estimation error, numerically stable
decompositions, and faster decompositions through fewer ensemble
trials. Our approach prefers the direct estimate of IMFs using sifting
as opposed to the indirect approach of ICEEMD. We focus in on
three areas: use of complimentary masking signals at an IMF level,
use of narrowband tones instead of white noise for masking signals,
and ensuring a true IMF is obtained after ensemble averaging.

Complimentary EMD extends EEMD by including complimen-
tary pairs of white noise signals, ±w(t) as the perturbation [11].
This can reduce the number of ensemble trials, I , required to guar-
antee that the perturbations average out of the ensemble. We propose
a different approach whereby a complementary perturbation signal

is applied to the residue, r(t) prior to sifting. Then ensemble aver-
aging takes place at the IMF level, as in CEEMD. We have observed
that incorporation of complementary pairs of masking signals into
CEEMD greatly reduces the number of trials necessary in the en-
semble, thereby resulting in faster decompositions.

In EEMD and subsequent versions, the masking signal is white
noise or sifted white noise. However, a deterministic signal, v(t) can
also be used as the perturbation [12,13]. We propose for the kth IMF
and ith trial, a narrowband masking signal with a random phase, ν
drawn from U [0, 2π)

v(i,k)(t) = β sin
[
ckfN t+ ν

]
(4)

where β > max (|x(t)|) is the tone amplitude, fN is the Nyquist
frequency, and |c| < 1 controls the tone frequencies. In our sim-
ulations, we have observed that this approach to resolving the fun-
damental problem of mode mixing, has three advantages. First, a
deterministic perturbation allows for reproducible decompositions
including a consistent number of IMFs. Second, the number of tri-
als can be dramatically reduced because of the complimentary pair
and the resulting IMFs from sifting are not artificially noisy. Finally,
this eliminates the need to use sifted white noise in CEEMD, thereby
significantly reducing computation.1

Ensemble averaging of IMFs as in (C)EEMD, may in fact lead
to ϕ̄k not being an IMF itself [3,4]. This situation is easily remedied
by applying the sifting algorithm to the kth IMF estimate after the
ensemble averaging, ϕ̄k. This step adds only a small computational
burden and guarantees that the IMF estimate is a “true ” IMF.

3.2. The Proposed EMD

The proposed improvements to CEEMD and demodulation are given
in Algorithm 2; the demodulation in Step 6 is described next. We
choose to name our algorithm Hilbert Spectral Analysis (HSA) be-
cause it represents the signal in the form of a superposition of com-
ponents parameterized by IAs and IFs, although, the HT is not used.

Algorithm 2 Hilbert Spectral Analysis (HSA)
1: procedure {ϕ̂k(t), âk(t), ω̂k(t)} = HSA( x(t) )
2: initialize: x−1(t) = x(t), k = 0, βk is a SNR factor, ε2 is

an energy threshold, and I is the number of trials
3: while

∫
|x(t)|2dt/

∫
|xk−1(t)|2dt > ε2

and xk−1(t) is not monotonic do

4: ϕ̄k(t) =
1

2I

I∑
i=1

[
SIFT( xk−1(t) + v(i,k)(t) )

+ SIFT( xk−1(t)− v(i,k)(t) )
]

5: ϕ̂k(t) = SIFT( ϕ̄k(t) )
6: [âk(t), ω̂k(t)] = IMFdemod( ϕ̂k(t) )
7: xk(t) = xk−1(t)− ϕ̂k(t)
8: k ← k + 1
9: end while

10: ϕ̂k(t) = xk−1(t)
11: end procedure

3.3. IA/IF Estimation

Rato proposed an AM demodulation approach given in Algorithm
3 [6]. Starting with an IMF estimate ϕ̂(t), we obtain an estimate

1Ensemble averaging in this approach is not to drive the perturbation to
zero as in (I)(C)EEMD but rather to average out numerical effects.
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for IA â(t) which can then be used to estimate the IF via the FM
signal ŝFM(t) = ϕ̂(t)/â(t). However, this estimate may result in
|ŝFM(t)| > 1. Thus, Huang proposed an iterative normalization
procedure, given in Algorithm 4, which removes the AM from the
signal to obtain a more accurate ŝFM(t) [7].

Direct FM demodulation is not straightforward because different
approaches exist for obtaining the IF from ŝFM(t), that although
are mathematically equivalent, may differ in numerical stability [7].
Huang proposed to estimate the phase, θ̂(t), from the normalized
FM signal, ŝFM(t), as θ̂(t) = arg

(
ŝFM(t)/[1− ŝ2FM(t)]

)
and then

IF is obtained with (3).

Algorithm 3 IA Estimation
1: procedure â(t) = IAest( ϕ̂(t) )
2: r(t) = |ϕ̂(t)|
3: find all local maxima: up = r(tp), p = 1, 2, . . .
4: interpolate: â(t) = CublicSpline({tp, up})
5: end procedure

Algorithm 4 Obtaining a real FM signal from an IMF
1: procedure ŝFM(t) = iterAMremoval( ϕ̂(t) )
2: initialize: g(t) = ϕ̂(t), b(t) 6= 1, and n = 0
3: while b(t) 6= 1 and n < 3 do
4: b(t) = IAest( g(t) )
5: g(t)← g(t)/b(t)
6: n← n+ 1
7: end while
8: ŝFM(t) = g(t)
9: end procedure

3.4. Improvements to IA/IF Estimation

Although the iterative procedure improves AM demodulation accu-
racy, it can be susceptible to oscillating artifacts introduced by over-
fitting of the cubic spline interpolator. As a result, we have found
that these artifacts can be minimized by replacing the cubic spline in-
terpolation (Step 4 in Algorithm 3) with a Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP). PCHIP has no overshoot and less
oscillation, thereby increasing the stability of IA estimation.

In order to address the numerical stability issues associated with
FM demodulation, we begin by estimating the quadrature in (2) as

σ̂FM(t) = −sgn
[
d

dt
ŝFM(t)

]√
12 − ŝ2FM(t) (5)

where −sgn
[
d
dt
ŝFM(t)

]
is required to obtain an appropriate four

quadrant estimate with assumed positive IF. This intermediate step
allows for more stable estimations because the computationally un-
stable points, {t0} occur near σ̂FM(t0) = 0. Thus, we can replace
a small range around these points (t0 − ε, t0 + ε) with interpolated
values. Then θ̂(t) = arg [ŝFM(t) + jσ̂FM(t)] and the IF is obtained
with (3). Our IMF demodulation is listed in Algorithm 5.

In summary, to estimate the IA/IF parameters of the signal x(t)
using the decomposition model in (1) with complex AM-FM com-
ponents given in (2), use Algorithm 2 which computes and IMF de-
composition and demodulates the components using Algorithm 5.

4. EXAMPLES

In this section, we compare the decomposition results of the
CEEMD, ICEEMD, and our proposed decomposition algorithm

Algorithm 5 IMF demodulation
1: procedure [â(t), ω̂(t)] = IMFdemod( ϕ̂(t) )
2: â(t) = IAest( ϕ̂(t) )
3: ŝFM(t) = iterAMremoval( ϕ̂(t) )

4: σ̂FM(t) = −sgn
[
d

dt
ŝFM(t)

]√
12 − ŝ2FM(t)

5: Find {t0} such that σ̂FM(t0) = 0
6: For each t0, replace (σ̂FM(t0 − ε), σ̂FM(t0 + ε))

with interpolation

7: ω̂(t) =
d

dt
arg [ŝFM(t) + jσ̂FM(t)]

8: end procedure

by plotting the IA/IF parameters using our proposed demodulation
algorithm. We utilize a 2D visualization of the Hilbert spectrum as
proposed in [14] which plots IA vs. IF vs. time. Color variation in
the plot line indicates the IA of the IMF while the value of the plot
line along the frequency axis indicates the IF of the IMF. In addition,
we include a plot of the Short-Time Fourier Transform (STFT) for
comparison. We use two real-world, test signals. The first is the
Electrocardiogram (ECG) signal from the MIT-BIH Normal Sinus
Rhythm Database [15] which we upsample by 2× to fs = 256 Hz
and the second is a Phonocardiogram (PCG) from the Classifying
Heart Sounds Challenge [16] sampled at fs = 44.1 kHz.

For comparisons, we use reference codes for CEEMD and
ICEEMD found at [17]; our HSA code can be found at [18]. For
CEEMD, ICEEMD, we set I = 500, I = 50, respectively, and the
noise standard deviation parameter to 0.2 which are all similar to
the authors’ choices in [4, 5]. For the HSA algorithm, we choose
α = 0.95, β = 3, ε1 = 30 dB, ε2 = 10 dB, c = 0.9, and I = 20
(40 actual masking signal realizations). For all algorithms, we limit
the maximum number of iterations in sifting to 50. In order to strike
a balance between time and frequency resolution, the STFT uses a
500 ms Hamming window for the ECG signal and 30 ms for the
PCG signal. The time-frequency decompositions for the ECG are
shown in Fig. 1 and for the PCG are shown in Fig. 2.

For the ECG signal, the HSA algorithm, ICEEMD, and CEEMD
returned 27, 10, and 9 IMFs respectively which are shown in Fig. 1.
Close examination of Fig. 1(a) reveals that the HSA algorithm is ca-
pable of decomposing multiple IMFs within a single octave, which
is in contrast to empirical experiments with EMD using white noise
that have shown EMD to act as a dyadic filter bank [3, 19–22].
Figs. 1(b) and (c) mirror these empirical experiments. In this exam-
ple, both CEEMD and ICEEMD also exhibit numerical instability
in one of more IMF estimations: demodulation of these IMFs leads
to strong, sharp “spikes” in the time-frequency plane [see for ex-
ample t = 0.5 and t = 2.3 in Fig. 1(b) and t = 1, t = 1.8, and
t = 2.3 in Fig. 1(c)]. The ECG signal is quasi-periodic and thus we
expect some periodicity in the time-frequency decomposition. This
property is more apparent in the HSA algorithm in Fig. 1(a) than
for the ICEEMD and CEEMD. Finally, we note the higher level of
resolution in the three EMD-based techniques than with the STFT.

For the PCG signal, the HSA algorithm, ICEEMD, and CEEMD,
returned 12, 19, and 20 IMFs, respectively which are shown in Fig. 2.
This demonstrates that the HSA algorithm is capable of returning
a more compact representation than (I)CEEMD. This is unlike the
ECG example where we had intra-octave IMFs present that the HSA
algorithm was able to resolve. This example also illustrates numer-
ical instability in one of more IMF estimations [see for example
t = 1.8 and t = 2.6 in Fig. 2(b) and t = 0.2 and t = 1 in Fig. 2(c)].
Finally, we see in Fig. 2(a) that the HSA algorithm aligns better with
STFT in Fig. 2(d) but with much better time-frequency resolution.
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(a) Proposed algorithm (b) Improved Complete Ensemble EMD (ICEEMD)

(c) Complete Ensemble EMD (CEEMD) (d) Short-Time Fourier Transform (STFT)

Fig. 1. Time-frequency decompositions of the electrocardiogram (ECG) signal using: (a) the HSA algorithm; (b) ICEEMD; (c) CEEMD; and
(d) STFT. For (a)-(c) the IA/IF estimation (demodulation) of IMFs is computed using Algorithm 5.

(a) Proposed algorithm (b) Improved Complete Ensemble EMD (ICEEMD)

(c) Complete Ensemble EMD (CEEMD) (d) Short-Time Fourier Transform (STFT)

Fig. 2. Time-frequency decompositions of the Phonocardiogram (PCG) signal using: (a) the HSA algorithm; (b) ICEEMD; (c) CEEMD; and
(d) STFT. For (a)-(c) the IA/IF estimation (demodulation) of IMFs is computed using Algorithm 5.

5. CONCLUSION

In this paper, we proposed an algorithm consisting of several im-
provements to the CEEMD algorithm, including complimentary
tone masking, an additional sift of the ensemble estimate, and a
numerically stable IF demodulation. We computed and visualized

the Hilbert spectrum of two biomedical signals using the HSA al-
gorithm and compared the result to CEEMD, ICEEMD, and STFT.
The HSA algorithm led to improvements in the ability to resolve
closely-spaced IMFs, reproducibility and consistency of the decom-
positions, and computation. In addition, overall numerical stability
was improved and computation was reduced.
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