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ABSTRACT

In this paper, we study the problem of distributed blind equalization
in single-input multi-output (SIMO) systems, wherein the channels
of networked systems share some similarities. This corresponds to
a multi-task optimization problem. To tackle this problem, an adap-
tive distributed generalized Sato algorithm (d-GSA) using the dif-
fusion cooperation rule is proposed. In the proposed d-GSA, only
the scalar of equalizer output is combined and transmitted among
neighbors, which significantly reduces the cost of computation and
communication. The performance of d-GSA is analyzed theoreti-
cally and verified by numerical simulations. Results show that the
d-GSA outperforms the corresponding non-cooperative GSA.

Index Terms— Blind equalization, networked systems, dif-
fusion, generalized Sato algorithm, multi-task optimization, node-
specific.

1. INTRODUCTION

Recently, with the advent of large-scale sensor networks, distributed
estimation, where the sensors collaboratively estimate a certain pa-
rameter vector of interest from noisy measurements, has received
much attention. It can exploit the flexible cooperative learning and
information processing across a set of spatially distributed sensors
with the ability of sensing, learning, adaption and communication.
In such a manner, distributed estimation can properly reduce the
amount of data communication over the networks, save bandwidth
and energy and extend the network lifetime [1, 2].

Yet, it is noted that most of existing distributed estimation algo-
rithms are nonblind or training-based. That is, to adapt the estimate
for the unknown parameters, both the input signal (reference signal)
and the desired output are known in advance by the receivers [3]-[7].
However, the use of a reference signal has some drawbacks. On the
one hand, it may be physically infeasible to obtain the training signal
in prior in some practical applications [8]-[10]. On the other hand,
even if a reference signal is available, the use of a training signal
may scarify valuable channel capacity [8, 11].

Recently, the theory of blind signal processing has been incorpo-
rated into the context of distributed in-network processing, and sev-
eral distributed blind adaptive algorithms have been proposed [12]-
[15]. As we are interested in the single-input multi-output (SIMO)
systems in this paper, only the studies on the SIMO systems are
briefly reviewed. In [12], Abdolee and Champagne have proposed
a kind of distributed constant modulus algorithm (d-CMA) using the
incremental cooperation protocol. Although this kind of d-CMA re-
quires a relatively low communication overhead, a Hermitian cyclic
path through the network is demanded. Such a cyclic trajectory is
vulnerable to link and node failures. Once a sensor fails, a new
cyclic path must be re-established. But such a path finding prob-
lem is NP-hard and time-consuming, especially for a large-size net-
work. Besides, in this paper, all of the channels are assumed to be
the same expect a certain phase shift, which is impractical for real

cases. To tackle these problems, in [15], a recursive consensus-based
distributed blind equalization algorithm has been proposed. But, to
obtain the equalizer for each sensor, a high-dimensional quantity
must be computed and transmitted among neighbors, which con-
sumes much computation and data transmission.

To reduce the number of computation and data transmission,
in this paper, an efficient distributed generalized Sato algorithm (d-
GSA) is proposed for the networked SIMO, wherein the source sig-
nal is of constant modulars and neighboring channels share some
similarities. Considering that the source signal is the same, only
the equalizer output (an estimate of the source signal) instead of the
tap weights of the channel equalizers, is exchanged and combined
among neighbors in the proposed d-GSA, thus significantly reduc-
ing the number of data transmission in the d-CMA [12].

The rest of this paper is organized as follows. In Sec. 2, the
problem of distributed blind channel equalization for SIMO systems
is formulated. In Sec. 3, a new d-GSA is proposed, and its perfor-
mance is analyzed in Sec. 4. In Sec. 5, some simulations are pre-
sented to show the effectiveness of the proposed algorithm. Finally,
some conclusion is drawn in Sec. 6.

Notation: In this paper, we use small and capital boldface let-
ters to denote vectors and matrices, respectively. The superscript
“T” and “*” denote the transposition and the complex conjugate-
transposition of a matrix or vector, respectively. The operators
vec{·}, diag{·}, col(·), E[·] and⊗ denote the standard vectorization
operation, the (block) diagonal matrix, the column vector, the ex-
pectation and the Kronecker product of two matrices, respectively.
The capital I denotes an identity matrix with suitable dimension.

2. PROBLEM FORMULATION

Consider a network consisting of N sensors spatially distributed
over a region with a certain topological structure. Note that here
the network topology is described by an undirected graph, and the
edge is defined if two sensors exchange information between each
other. All the sensors are interested in the common message sender
s(n) through its own specified FIR channel with impulse response
hk(·), which gives rise to an output uk(n), i.e.

uk(n) =

L−1∑
l=0

hk(l)s(n− l) + vk(n) (1)

where vk(n) denotes an additive measurement noise, which is i.i.d.
and follows a complex circular Gaussian distribution, i.e. vk(n) ∼
C(0, σ2

v,k). Note that the measurements uk(n) can be real or com-
plex depending on the input s(n) and the channel hk(n). The com-
plex s(n) is of constant modulus. In this paper, we take the 4-
quadrature amplitude modulation (4-QAM) as an example.

Based on the complex measurements {uk(n)} of the network,
our target is to design a blind equalizer wk(·) for each channel k by
fusing the information from a subset of k’s neighbors so as to reduce
the intersymbol interference (ISI).
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Besides, it is also assumed that there exists some similarities
(denoted by notation ‘∼’) between the optimal channel equalizers
wo
k and its neighbor wo

l , i.e.

wo
k ∼ wo

l , l ∈ Nk. (2)

Note that this assumption is reasonable for the case that the common
source s(n) lies in a far-end field. In this case, the neighboring chan-
nels can be assumed to be similar due to the similar channel fading,
which further implies that the equalizers of the neighbors share some
similarities. Under this assumption, it is expected that the coopera-
tion among sensors help improving the performance of equalization.

In addition, to perform the performance analysis, some assump-
tions commonly adopted in adaptive filtering [3]-[5] and blind equal-
ization [12, 16] are assumed at first.

A-1: The channel is time-invariant and {s(n)}, {vk(n)}, and
{uk(n)} are stationary and have zero mean. The input sequence
{s(n)} and the additive noise {vk(n)} are temporally and spatially
independent identically distributed (i.i.d.) with zero mean. We also
assume that {s(n)} and {vk(n)} are independent of each other.

A-2: The equalizer input vector uk(n) conditioned on the source
signal {s(n)} is a complex Gaussian random vector (RV), and it is
also upper bounded by a constant.

A-3: For each node, the tap weight vector wk(n) is independent
of the equalizer input, uk(n).

A-4: The components of the transformed tap weight vector for
each node k are uncorrelated, and those of different nodes are also
uncorrelated.

A-5: Assuming the noise power σ2
v,k is small enough such that

the zero-forcing solution wo ∈ CM is the global minimizers of the
cost function.

3. DISTRIBUTED GENERALIZED SATO ALGORITHM

In this section, a distributed version of generalized Sato algorithm
using the diffusion cooperation rule is proposed.

In the study of distributed in-network processing, it is essential
to find a certain common quantity for data fusion among neighbor-
ing sensors. In the d-CMA proposed in [12], as all the sensors are
interested in the same channel equalizer, the weights of the channel
equalizers wk(n) are combined. But, in our considered case, as the
channels are different, the channel equalizers are also node-specific.
So, the direct combination of equalizers wk(n) is not applicable.

Yet, considering that we are interested in the common source
signal s(n), it is required that the equalizer outputs at different sen-
sors, which are estimates for s(n), should be the same or at least
similar, i.e.

yk(n) ∼ yl(n), l ∈ Nk,

such that the recovered data symbols with an aid of the slicer at dif-
ferent sensors can achieve consensus. So, the equalizer output yk(n)
can be selected as the quantity to be combined.

Based on the above analysis and the principle of the generalized
Sato algorithm [17, 18], we can seek wo

k at each sensor k by mini-
mizing the following cost function between the aggregated equalizer
output (the estimate of the source) and the statistics of the transmit-
ted data constellation, which is expressed as

Jk(w) = E[|γcsgn(ỹk(n))− ỹk(n)|2], (3)

where “csgn” denotes the complex sign function for the aggregated
equalizer output, which is expressed as

ỹk(n) =
∑
l∈Nk

alkyl(n) =
∑
l∈Nk

alkul(n)wl(n), (4)

and the non-negative coefficients alk satisfy

alk = 0 if l /∈ Nk, A1 = 1, 1TA = 1T . (5)

In the implementation, using the steepest-descent algorithm, we
can obtain a recursion for the estimate of wk at each iteration n

wk(n+ 1) = wk(n)− µk[∇wJk(wk(n))]
∗, (6)

where 0 < µk < 1 is a step-size parameter, and∇wJk(wk) denotes
the gradient of Jk(wk) with respect to wk(n), which is given by

[∇wJk(wk(n))]
∗ = −u∗k(n)[γcsgn(ỹk(n))− ỹk(n)]. (7)

Substituting (7) into (6), we have the channel equalizer adapt
according to

wk(n+ 1) =wk(n) + µku
∗
k(n)[γcsgn(ỹk(n))− ỹk(n)]. (8)

This algorithm is named as distributed generalized Sato algo-
rithm, denoted as d-GSA for short. To summarize, its implementa-
tion procedure is given in Algorithm 1.

Algorithm 1 Distributed generalized Sato algorithm (d-GSA)
Initialization: For each node k, the equalizer wk(0) is initialized
such that the center tap being one and the other taps being zero.
For each time n ≥ 1 and each node k, repeat the following:

1. Compute equalizer output:
yk(n) = uk(n)wk(n− 1), k = 1, . . . , N.

2. Combination: ỹk(n) =
∑
l∈Nk

alkyl(n).

3. Adaption:
wk(n+ 1) = wk(n) + µku

∗
k(n)[γcsgn(ỹk(n))− ỹk(n)].

4. PERFORMANCE ANALYSIS

In this section, the performance of d-GSA in both mean and mean-
square senses is analyzed.

For the 4-QAM message sender s(n), we have |sr(n)| =
|si(n)| = γ. Then, we can make the following approximation

γcsgn(yl(n)) =γcsgn(s(n)) + zl(n)

=s(n) + zl(n),
(9)

where zl(n) is a Gaussian random variable with zero-mean and vari-
ance σ2

z,l, since s(n) is uniformly symmetrically distributed with
zero mean as stated in A-1. Besides, zl(n) is also independent of
ul(n), according to A-2 and A-3.

Based on assumption A-5, we assume that by choosing suitable
step-size µk, the estimate of the channel equalizer wk(n) converges
close enough to the optimum wo

k such that the complex sign of the
equalizer output before and after combination keep invariant [18,
19], i.e.

csgn(ỹk(n)) = csgn(yl(n)), l ∈ Nk. (10)

Let us define

ek(n) =γcsgn(ỹk(n))− ỹk(n)

=γcsgn(ỹk(n))−
∑
l∈Nk

alkyl(n). (11)
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Then, by selecting alk satisfying (5) and based on (10), (11)
reduces to

ek(n) =γcsgn(yl(n))−
∑
l∈Nk

alkyl(n)

=
∑
l∈Nk

alk(γcsgn(yl(n))− yl(n)).
(12)

Using the approximation (9) and based on A-5, ek(n) becomes

ek(n) =
∑
l∈Nk

alk(γcsgn(s(n))− yl(n))

=
∑
l∈Nk

alkul(n)(w
o
l −wl(n)) +

∑
l∈Nk

alkzl(n).
(13)

Let us define the instant weight error vector for each node k as

w̃k(n) = wo
k −wk(n). (14)

Based on (14), we can establish the following relationship

w̃l(n) =wo
k −wo

k +wo
l −wk(n) +wk(n)−wl(n)

=wo
k − w̃o

kl −wk(n) + w̃kl(n),

where the instantaneous error between wk(n) and wl(n) gives

w̃kl(n) =wk(n)−wl(n), (15)

and wo
kl = wo

k −wo
l denotes the difference of the optimal channel

equalizers between sensor k and l.
Subtracting wo

k from (8), we have

wo
k −wk(n+ 1) =wo

k −wk(n)− µku∗k(n)ek(n)

=[1− µku∗k(n)
∑
l∈Nk

alkul(n)](w
o
k −wk(n))

− µku∗k(n)
∑
l∈Nk

alkul(n)w̃kl(n)

+ µku
∗
k(n)

∑
l∈Nk

alkul(n)w̃
o
kl

− µku∗k(n)
∑
l∈Nk

alkzl(n).

(16)

Besides, we also define the following global vectors:

wn =col{w1(n), . . . ,wN (n)}, w̃n = col{w̃1(n), . . . , w̃N (n)

wo =col{wo
1, . . . ,w

o
N}, M = diag{µ1IM , . . . , µNIM}

Dn =diag{
∑
l∈N1

al1u
∗
1(n)ul(n), . . . ,

∑
l∈NN

alNu∗N (n)ul(n)},

Huz(n) =col{
∑
l∈N1

al1u
∗
1(n)zl(n), . . . ,

∑
l∈NN

alNu∗Nzl(n)},

Hw̃(n)=col{
∑
l∈N1

al1u
∗
1(n)ul(n)w̃

o
1l, . . . ,

∑
l∈NN

alNu∗N (n)ul(n)w̃
o
Nl},

Hw̃′(n)=col{
∑
l∈N1

al1u
∗
1(n)ul(n)w̃1l(n), . . .∑

l∈NN

alNu∗N (n)ul(n)w̃Nl(n)}.

(17)

Based on (16) and (17), we have the global weight error

w̃n+1 =(IMN −MDn)w̃n −Huz(n) +Hw̃(n)−Hw̃′(n),

(18)

where IMN denotes a MN -dimensional identity matrix.
Taking the expectations of those terms in (18) and based on the

assumptions A-1-A-4, we have

D =diag{
∑
l∈N1

al1E[u∗1(n)ul(n)], . . . ,
∑
l∈NN

alNE[u∗N (n)ul(n)]},

Huz =E[Huz(n)] = 0,

Hw̃ =col{
∑
l∈N1

al1E[u∗1(n)ul(n)]w̃
o
1l, . . . ,∑

l∈NN

alNE[u∗N (n)ul(n)]w̃
o
Nl},

Hw̃′ =col{
∑
l∈N1

al1E[u∗1(n)ul(n)w̃1l(n)], . . . ,∑
l∈NN

alNE[u∗N (n)ul(n)w̃Nl(n)]}

=Hw̃.

(19)

Based on (19), we have the expectation of global error vector

E[w̃n+1] =(IMN −MD)E[w̃n]. (20)

From (20), it is noticed that the mean stability of the estimate
depends on the stability of the matrix IMN −MD. If the positive-
definiteness ofD can be ensured, then by choosing suitable step-size
µk, matrix IMN−MD is stable, and thus the weight error vector w̃n

converges to zero as n → ∞. In this case, wn can achieve an
asymptotically unbiased estimate of the optimum equalizer wo.

Based on (14), we define the transient mean-square deviation
(MSD) for each node k as

MSDk ,E||w̃k(n)||2. (21)

Following a similar analysis as that performed in the distributed
LMS algorithms [3, 4], the global MSD of the network is given by

E||w̃n+1||2σ =E||w̃n||2Fσ + αTσ, (22)

and when n→∞, we have

E||w̃∞||2(IM2N2−F )σ =αTσ, (23)

whereα = vec{MHTuM},Hu = AT diag{σ2
z,1Ru,1, . . . , σ

2
z,NRu,N}A

with A = A⊗ IM , and F = {IM2N2 − IMN ⊗ (DM)− (DTM)⊗
IMN + E[(DTnM)⊗ (DnM)].

Remark 1: Comparing to the d-CMA proposed in [12], it is no-
ticed that in the d-GSA, only a scalar equalizer output yl(n), l ∈ Nk
should be transmitted at each iteration, which significantly reduces
the number of data transmission. Therefore, d-GSA is more efficient
than the d-CMA from the viewpoint of power-efficiency.

Remark 2: Referring to (20), the stability of the estimate
for each node k depends on the second-order moment of the
measurements uk(n) and ul(n), l ∈ Nk. Owing to the dif-
ferences in channel models hk(n), the second-order moment∑
l∈Nk

alkE[u∗k(n)ul(n)] may not be positive-definite, and thus
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the positive-definiteness of the matrix D cannot be ensured. To deal
with this problem, the original Metropolis rule is modified as

al,k = 0.5/max(nk, nl) if l (l 6= k) connects to k,
al,k = 1−

∑
l∈Nk\k

al,k if l = k,

al,k = 0 otherwise,
(24)

where nk and nl are the degrees for nodes k and l, respectively.
From (24), we can see that the combination matrix A is now dom-
inated by the diagonal elements of its own estimates and thus fo-
cus more on the covariance matrix of Ru,k to ensure the positive-
definiteness of the matrix to some extent.

5. NUMERICAL SIMULATIONS

In the simulation, a sensor network consisting of 16 sensors and total
32 links is adopted. The signal-to-noise ratios (SNRs) for the sensors
are randomly distributed within (8 , 12]dB. The source signal s(n) is
generated from 4-QAM constellation. The signal s(n) is then trans-
mitted to each sensor through a node-specific channel modeled by a
transversal filter of length 7. The impulse responses of the transmis-
sion channels hk = [hk(0), . . . , hk(L − 1)] over the network are
centered at a fixed complex vector ho, that is, hk = ho+ h̃k, where
ho is given in Fig. 1, and the perturbation h̃k follows a complex
circular Gaussian distribution, i.e. h̃k ∼ C(0, σ2

h,k).
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Fig. 1. Averaged channel impulse response ho. (a) Real part. (b)
Imaginary part.

In the following simulations, three cases with different values of
σh,k are considered. In Case 1, we set σh,k = 0 such that the trans-
mission channels hk are identical. In Case 2, we consider the case
that transmission channels are similar, by setting a smaller variance
σh,k = 0.02. In Case 3, a larger variance σh,k = 0.16 is used such
that the transmission channels and thus the corresponding channel
equalizers differ greatly from each other.

In our simulation, a 20-tap complex equalizer is adopted and ini-
tialized so that the center tap is set to one and the other taps are zero.
The step-size is set as µk = 1 × 10−3 for each node in the above
three cases. Note that for the purpose of performance comparison,
the result of the non-cooperative GSA, i.e. nc-GSA, is also depicted.

Since the exact value of wo is unavailable in practice, we use
the measure of residual ISI instead of the MSD to evaluate the per-
formance of the algorithms in blind equalization. Fig. 2 depicts the
averaged ISI of the network over 20 independent simulations. It is
obvious that the d-GSA shows better performance than the nc-GSA
for all the cases, which indicates that the cooperation among neigh-
boring sensors can improve the performance of equalization. Be-
sides, it is noticed that the performance enhancement of the d-GSA
reduces, as the differences between channels increase, see the results
from Case 1 to Case 3. This is reasonable as the extent of similarities
affects the performance of distributed equalization. To be specific,

in Case 1, as all the sensors are interested in the same channel equal-
izer (single task), the performance enhancement by collaborating all
the sensors is significant. On the contrary, for Case 3, as there ex-
ist relatively large differences in channels between sensors, that is,
the tasks differ a lot from each other, the effect of data combination
reduces. The Case 2 lies somehow between Case 1 and Case 3.
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Fig. 2. Simulation results. (a) Averaged transient ISI vs iteration
for Case 1. (b) Averaged transient ISI vs iteration for Case 2. (c)
Averaged transient ISI vs iteration for Case 3.

6. CONCLUSION
In this paper, we have developed a diffusion generalized Sato algo-
rithm (d-GSA), which seeks the optimal channel equalizer by min-
imizing the cost function between an aggregated equalizer output
and the statistics of the transmitted data constellation. The conver-
gence of the d-GSA has been analyzed and its performance has been
verified by numerical simulations. Simulation results have shown
that the proposed algorithm shows good equalization performance
for SIMO systems, comparing to the non-cooperative GSA.
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