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ABSTRACT

This paper deals with model comparison based on the Jeffrey’s di-

vergence (JD). More particularly, after providing the JD between the

joint distributions of k consecutive values of a white noise and the

ones of a real moving-average or autoregressive model, the JD be-

tween real 1st-order MA and real 1st-order AR models is studied.

Except when the 1st MA parameter is equal to 1, we show that, after

a transient period, the JD between both models is incremented by

a constant value that depends on the model parameters while k is

incremented by 1. The JD is hence characterized by this increment

and it is not necessary to consider a lot of samples.

Index Terms— Jeffrey’s divergence, moving-average, autore-

gressive, model comparison

1. INTRODUCTION

Model comparison can be useful, more particularly in applications

when classification is required. For instance, in target tracking

based on Bayesian approaches, the motion model is usually a priori

defined and selected among models such as the constant-velocity

model, Singer model, etc. As one model may not be sufficient,

multiple-model based methods can be used where a set of two

or three dissimilar motion models are considered [1]. Therefore,

classifying motion models in a preliminary step is of interest. In

biomedical applications, the data can be represented by stochastic

models that are then compared to distinguish healthy patients from

people having a pathology. Concerning other applications such as

the internet of things (IoT) where various sensors record different

data, it can be of interest to compare the models representing the

data to analyze if there are some dissimilarities or not.

Thus, when dealing with autoregressive (AR) models, model

comparison can be based on the Itakura measure especially used in

speech processing, the 2-norm of the difference between the two AR-

parameter vectors or the spectral distance such as the log-spectral

distance or the Itakura-Saito divergence. Divergences measuring the

similarity between sample distributions can be also considered. In

[2], Jeffrey’s divergence (JD), which is the symmetric Kullback-

Leibler (KL) divergence, is computed between the distributions of

the successive samples of two time-varying AR (TVAR) models.

The approach has been also extended to classify more than two AR

models [3] or motion models [4] in various model subsets. As an al-

ternative, metrics in the information geometry can be seen as dissim-

ilarity measures. The reader may refer to Barbaresco’s work et al.

where the information geometry of AR-model covariance matrices

[5] [6] is studied. As for the AR case, moving-average (MA) models
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can be compared by using the 2-norm between the MA-parameter

vectors or the spectral distances. In [7], we give the exact analytical

expressions of the JD between 1st-order MA models, for any MA pa-

rameter and any number of samples. Moreover, the MA models can

be real or complex, noise-free or disturbed by additive white Gaus-

sian noises.

To our knowledge, there is no work dealing with the comparison be-

tween 1st-order MA and AR models. As an alternative to a spectral

distance or the model-parameter vector comparison1, we propose to

analyze the JD between a real 1st-order MA model and a real 1st-

order AR model. Analytical expressions, properties, comments and

various examples are given in this paper.

The remainder of this paper is organized as follows: in section

2, definitions and properties about real 1st-order MA and AR models

are recalled. In section 3, JD between a white noise and a MA or AR

model are first presented. They correspond to specific cases. Then,

the JD between MA and AR models is studied. Simulation results

are then presented and illustrate the theoretical part.

In the following, Ik is the identity matrix of size k, J1 the k × k
upper shift matrix and ei a vector of size k × 1 full of zeros except

for the ith component which is equal to 1. (Q)g,h is the element of

the matrix Q at the gth row and the hth column. Tr denotes the trace

of a matrix while the upper-script T is the transpose. det defines the

determinant and xk1:k2 is the collection of samples from time k1 to

k2.

2. ABOUT REAL 1ST -ORDER AR AND MA MODELS

Firstly, let xk be a 1st-order AR model defined as follows:

xk = −a1xk−1 + uk, (1)

where a1 is the AR parameter and the driving process uk is a zero-

mean Gaussian white noise with variance σ2
u. In this case, the cor-

relation function r
(x)
τ satisfies r

(x)
τ = (−a1)

|τ|

1−a2
1

σ2
u. For k ≥ 2, the

k × k correlation matrix is defined by:

1A 1st-order AR model is an infinte-order MA model (and conversely).
If a1 is the AR parameter, the corresponding infinite-order MA model is
defined by the infinite length MA parameter vector: [1,−a1, a21,−a31, ...].
Considering a 1st-order MA model represented by the parameter vector
[1, b1, 0, ...], the difference vector between the two parameter vectors of the
MA models is [0,−a1 − b1, a21,−a31, ...]. The square of the norm of the

difference vector is then equal to (a1 + b1)2 + a41/(1− a21).
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, (2)

and its inverse is [8]:

(

Q
(x)
k

)−1

=
1

σ2
u

[

(1 + a2
1)Ik + a1(J1 + J−1)

− (1 + a2
1)[e1,ke

T
1,k + ek,ke

T
k,k]
]

. (3)

Secondly, let yk be a 1st-order MA model defined by:

yk = vk + b1vk−1, (4)

where b1 is the MA parameter. The driving process vk is a zero-

mean Gaussian white noise with variance σ2
v , uncorrelated with uk.

The correlation function r
(y)
τ satisfies:

r(y)τ =







(1 + b21)σ
2
v for τ = 0,

b1σ
2
v for τ = ±1,

0 otherwise.

(5)

For k ≥ 2, the k × k correlation matrix is defined by:

Q
(y)
k = σ2

v

[

(1 + b21)Ik + b1(J1 + J−1)
]

. (6)

The element at the ith row and the j th column of the inverse of Q
(y)
k

is given by [9]:

• for |b1| 6= 1:

(

Q
(y)
k

)−1

ij
=

1 + b21

r
(y)
0 (1− b21)

[

(−b1)
|i−j| − (−b1)

2k−i−j+2
(7)

−
(−b1)

i+j(1− b2k−2i+2
1 )(1− b2k−2j+2

1 )

1− b2k+2
1

]

.

• for |b1| = 1:

(

Q
(y)
k

)−1

ij
=

(−b1)
j−i

σ2
v

i(k + 1− j)

k + 1
. (8)

Remark: the MA model (4) can be seen as the filtering of a white

noise defined by its transfer function H(z) = 1 + b1z
−1. Let us

now consider a second MA model defined by σ2
v(†) , the MA param-

eter 1/b1 and the transfer function H(†)(z) = 1 + 1
b1
z−1. Then,

considering |b1| < 1, H(z) can be rewritten as follows:

H(z) =
1

|b1|
G(b1, z

−1)H(†)(z), (9)

where G(b1, z
−1) = |b1|

−b1

−b1−z−1

1+b1z
−1 is a Blaschke product [10] which

can be seen as the transfer function of an all-pass filter. If θ denotes

the normalized angular frequency, the corresponding power spectral

densities (PSD) satisfy:

Syy(θ) = S(†)
yy (θ)

1

b1
2

σ2
v(†)

σ2
v

. (10)

The above PSDs are hence equal if:

σ2
v(†)

b1
2 = σ2

v. (11)

Remark: when |b1| = 1, the PSD is equal to 0 either at θ = 0 or

θ = ±π whereas this property cannot be obtained with a 1st-order

AR model.

We will see that this particular case is clearly identified when the JD

is used. Given the above definitions and properties, let us address the

study of the JD between the AR and MA models in the next section.

3. JEFFREY’S DIVERGENCE BETWEEN STOCHASTIC

MODELS

We suggest analyzing the dissimilarities between the real AR and

MA models by means of the JD between the joint distributions of

k successive values of these models, denoted p (x1:k) and p (y1:k)
respectively.

For this purpose, let us recall the KL divergence between two mul-

tivariate normal densities with means µ(x)

k
, µ(y)

k
and covariance ma-

trices Q
(y)
k and Q

(y)
k [11]:

KLk
(x,y) =

1

2

[

Tr(Q
(y)
k

−1
Q

(x)
k )− k − ln

detQ
(x)
k

detQ
(y)
k

(12)

+ (µ(y)

k
− µ(x)

k
)TQ

(y)
k

−1
(µ(y)

k
− µ(x)

k
)

]

.

The JD between p (x1:k) and p (y1:k) is deduced by symmetrizing

the KL expression (12). For zero-mean Gaussian models, the JD

becomes:

JDk
(x,y) = −k +

1

2

[

Tr(Q
(y)
k

−1
Q

(x)
k ) + Tr(Q

(x)
k

−1
Q

(y)
k )
]

.

(13)

In the following, as the AR and/or MA parameter, i.e. a1 and b1, can

be equal to 0, our analysis starts by the trivial case corresponding to

the JD between white noises. Then, the JDs between a MA or AR

model and a white noise are presented. The last part deals with the

JD between AR and MA models. Our work is hence complementary

to the studies presented in [2] and [12].

3.1. Jeffrey’s divergence for k samples of white noises

Let us first assume that a1 = b1 = 0. It is well-known that the above

equation (13) becomes:

JDk
(WN,WN) = k

[

−1 +
1

2

[

σ2
u

σ2
v

+
σ2
v

σ2
u

]]

. (14)

The JD depends on the ratio between the noise variances
σ2
u

σ2
v

or

equivalently the noise DSPs. The more dissimilar the variances are,

the higher the JD is. It confirms what we could intuitively expect.

In addition, as the JD is a linear function of the number of samples

k, increasing the number of samples does not bring in anything to

compare both models.

3.2. JD for k samples of a MA model and a white noise

Let us now assume that a1 = 0 and b1 6= 0. Using (6)-(8) and (13),

it can be shown that:

JDk
(MA,WN) = −k +

1

2

[

k(1 + b21)
σ2
v

σ2
u

+
σ2
u

σ2
v

Ak

1 + b21

]

, (15)

where for k ≥ 1:

Ak =











(1+b21)

(1−b21)

k(1+b
2k+2
1 )−

2b21(1−b
2k
1 )

1−b21

1−b
2k+2
1

for |b1| 6= 1,

k(k+2)
3

for |b1| = 1.

(16)
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Given (16) and when k increases, the difference between two con-

secutive values of Ak reduces to:

Ak+1 −Ak ≈

{

1+b21
|1−b21|

for |b1| 6= 1,
2k+3

3
for |b1| = 1.

(17)

Therefore, combining (15) and (17), one can deduce

lim
k→+∞

(

JDk+1
(MA,WN) − JDk

(MA,WN)
)

:

lim
k→+∞

∆JDk
(MA,WN) = (18)







−1 + 1
2

[

(1 + b21)
σ2
v

σ2
u

+
σ2
u

σ2
v

1
|1−b21|

]

for |b1| 6= 1,

−1 + 1
2

[

(1 + b21)
σ2
v

σ2
u

+
σ2
u

σ2
v

2k+3
3(1+b21)

]

for |b1| = 1.

The difference between two successive JD tends to be a constant

after a transient period when |b1| 6= 1 whereas it depends on k if

|b1| = 1. In addition, the MA model defined by the MA parame-

ter 1/b1 which satisfies (11) leads to the same result (18). In other

words, if the PSDs of the MA models are the same, ∆JDk is the

same. Similarly, the spectral distance between the white noise and

the MA model yk or the MA model defined by 1/b1 and (11) would

be the same.

3.3. JD between a white noise and an AR model

In this subsection, b1 = 0 whereas a1 6= 0. Using (2), (3) and (13),

it can be easily shown that:

JDk
(AR,WN)= −k+

1

2

[

σ2
u

σ2
v

k

(1− a2
1)

+
σ2
v

σ2
u

[

k(1 + a2
1)− 2a2

1

]

]

.

(19)

Therefore for any k ≥ 1, the difference between two consecutive JD

is a constant equal to:

∆JDk
(AR,WN) = JDk+1

(AR,WN) − JDk
(AR,WN)

(20)

= −1 +
1

2

[

σ2
u

σ2
v

1

(1− a2
1)

+
σ2
v

σ2
u

(1 + a2
1)

]

.

In this case, there is no transient period. The JD between both mod-

els can be directly characterized by the increment (20). The latter

depends on the noise variance ratio and the AR parameter.

3.4. JD between an AR model and a MA model

Let us now assume that b1 6= 0 and a1 6= 0. Given (13), two traces

must be computed. In the next two subsections, we analyze how they

evolve when k increases.

3.4.1. Studying Tk
(MA,AR) = Tr(Q

(y)
k

−1
Q

(x)
k )

For k = 1, it can be easily shown that:

T1
(MA,AR) = Q

(y)
1

−1
Q

(x)
1 =

σ2
u

σ2
v

1

(1 + b21)(1− a2
1)
. (21)

For k ≥ 2 and given the definitions (2) and (7) - (8) of Q
(x)
k and

Q
(y)
k

−1
respectively, Tk

(MA,AR) satisfies:

σ2
u

(1− a2
1)

(

k
∑

i=1

(Q
(y)
k )−1

i,i + 2

k−1
∑

l=1

(−a1)
l

k−l
∑

i=1

(Q
(y)
k )−1

i,i+l

)

. (22)

In the following, let us express (22) for different values of b1:

Case 1: |b1| 6= 1, the expression (22) of the trace Tk
(MA,AR) be-

comes:

σ2
u

σ2
v(1− a2

1)

[

k(1− b2k+4
1 ) + (k + 1)b21(b

2k
1 − 1)

(1− b21)
2(1− b2k+2

1 )
(23)

+ 2

k−1
∑

l=1

(a1b1)
2

(1− b21)
2(1− b2k+2

1 )

[

(k − l)(1− b2k−2l+4
1 )

+ (k − l + 2)b21(b
2k−2l
1 − 1)

]

]

.

Given the above equation, let us now deduce lim
k→+∞

∆Tk
(MA,AR)

where ∆Tk
(MA,AR) = Tk+1

(MA,AR) − Tk
(MA,AR) . Two cases

must be considered:

• |b1| < 1. Given (23) and after development and simplification,

one has:

lim
k→+∞

∆Tk
(MA,AR) = (24)

σ2
u

σ2
v(1− a2

1)

[

1

(1− b21)
+ 2

a1b1
(1− a1b1)(1− b21)

]

.

• |b1| > 1.

lim
k→+∞

∆Tk
(MA,AR) =

σ2
u

σ2
v(1− a2

1)

[

1

(b21 − 1)
+ 2

a1/b1
(1− a1/b1)(1− b21)

]

. (25)

Given (24) and (25), it should be noted that the MA model

(4) and the one defined by the MA parameter 1/b1 which sat-

isfies (11) lead to the same value for the asymptotic increment

lim
k→+∞

∆T
(MA,AR)
k .

Case 2: |b1| = 1, given (23), the increment is equal to:

∆Tk
(MA,AR) =

σ2
u

σ2
v(1− a2

1)

[

2k + 3

6
+

2(a1b1)
k

k + 1
(26)

+
1

3

k
∑

l=1

(a1b1)
l(k + 1− l)(k + 2− l)(2k + 3 + l)

(k + 1)(k + 2)

]

.

3.4.2. Studying Tk
(AR,MA) = Tr(Q

(x)
k

−1
Q

(y)
k )

For k = 1, it can be easily shown that:

Q
(x)
1

−1
Q

(y)
1 =

σ2
v

σ2
u

(1− a2
1)(1 + b21). (27)

For k = 2, one has:

Tr
(

(Q
(x)
2 )−1Q

(y)
2

)

= 2
σ2
v

σ2
u

(1 + a1b1 + b21). (28)

For k > 2, using the expressions (3) and (6) of (Q
(x)
k )−1 and Q

(y)
k ,

one has:

Tk
(AR,MA) = Tr

(

(Q
(x)
k )−1Q

(y)
k

)

(29)

=
σ2
v

σ2
u

[

2(k − 1)a1b1 + k(1 + a2
1)(1 + b21)− 2a2

1(1 + b21)
]

.
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Therefore, for k > 2, the difference between two consecutive terms

∆Tk
(AR,MA) is equal to:

∆Tk
(AR,MA) =

σ2
v

σ2
u

[

2a1b1 + (1 + a2
1)(1 + b21)

]

. (30)

Given (30), the MA model (4) and the one defined by the MA pa-

rameter 1/b1 which satisfies (11) lead to the same value once again.

3.4.3. Deducing the JD evolution when k increases

To deduce the way the JD evolves, i.e. ∆JD
(AR,MA)
k which is equal

to JD
(AR,MA)
k+1 − JD

(AR,MA)
k , one first has to combine the results

(30) with (25) or (26) obtained in the two above subsections. Indeed,

due to (13), one has:

∆JDk
(AR,MA) = −1 +

1

2

[

∆Tk
(MA,AR) +∆Tk

(AR,MA)
]

.

(31)

We can conclude that except when |b1| = 1, the increment of the

JD tends to remain contant when k increases and depends on the

MA and AR parameters as well as the driving-process variances. In

addition, given an AR model, the MA model (4) and the one defined

by the MA parameter 1/b1 which satisfies (11) lead to the same JD

increment and the same Itakura-Saito distance.

4. SIMULATION RESULTS

4.1. 1st protocol

Let us first illustrate the way the JD evolves for a1 = 0.3, b1 = 1.1,

σ2
u = 2 and σ2

v = 0.9. This confirms the theoretical result obtained

in section 3.4.

Instant k

0 10 20 30 40 50 60 70 80

J
D

0

200

400

600

800
JD

Increment of the JD

Fig. 1. Evolution of the JD over k when a1 = 0.3,
σ2
u = 2, b1 = 1.1, σ2

v = 0.9.

4.2. 2nd protocol

Then, let us compute the JD for k = 20, σ2
u = 2 and σ2

v = 1.1.

The AR parameter varies in the interval ]−1, 1[ whereas the MA

parameter lies in the interval [−3, 3].

-1
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b
1

0
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2
3
0

10000

5000J
D

Fig. 2. Evolution of the JD when k = 20, σ2
u = 2, σ2

v = 0.9,
a1 varies in ]− 1, 1[ and b1 varies in [−3, 3].

According to Fig. 2, it can be seen that the JD is sensitive to the

value of the MA parameter when the modulus of the latter is around

1.

The square of the norm of the difference vector between [1, b1, ...]
and [1,−a1, a

2
1, ...] given by (a1+b1)

2+a4
1/(1−a2

1) is represented

on Fig. 3.
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Fig. 3. Evolution of (a1 + b1)
2 + a4

1/(1− a2
1), when

a1 varies in ]− 1, 1[ and b1 varies in [−3, 3].

The log-spectral distance LSD can be approximated by the follow-

ing discrete calculation made on N points of the power spectrum

densities:

LSD(AR,MA) ≈

√

√

√

√

√

1

N

N

2
−1
∑

n=−N

2

[

10ln
Sxx(2π

n
N
)

Syy(2π
n
N
)

]2

. (32)
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Fig. 4. Evolution of the log-spectral distance when k = 20, σ2
u = 2,

σ2
v = 0.9, a1 varies in ]− 1, 1[ and b1 varies in [−3, 3].

According to Fig. 4 and unlike the square of the model parameter

vector difference, the log-spectral distance is also sensitive to the

value of the MA parameter when the modulus of the latter is around

1 and is similar to the JD. However, it should be noted that the range

of values of the log-spectral distance is far smaller than the range of

values of the JD. The phenomenon of increasing sensitivity of the

JD for |b1| = 1 is pointed out in the theoretical part.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, the JD between real 1st-order AR and MA models is

studied. We show that the derivative of the JD tends to be a constant

when the number of samples increases. This phenomenon occurs

except when the modulus of MA parameter is equal to 1. The JD has

hence the advantage of emphasizing this particular case where the

PSD associated with the MA model is null at a frequency whereas

all the frequencies appear in the PSD of the AR model. We are

currently studying the JD between noisy AR and MA models.
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