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ABSTRACT
Zero crossing data contain information of a process in com-
pact form and is therefore of interest in wireless sensor net-
works where only reduced amounts of data can be transmit-
ted. When analyzing the properties of certain algorithms us-
ing zero crossing data, the cross-covariance between the zero
crossing rates of two jointly Gaussian and stationary pro-
cesses is needed. The evaluation of such a cross-covariance
is considered in the paper and an exact numerical expression
as well as an asymptotic expression are presented.

Index Terms— Gaussian processes, zero crossings,
cross-correlations

1. INTRODUCTION

The theory of zero crossings is a mathematical tool used
primarily in information theory, mathematical statistics and
statistical signal processing for describing and analyzing the
properties of stochastic processes. Some early results on zero
crossings appear in the information theory literature [1, 2]
and in work on radio transmission [3]. Zero crossings have
continued to gain interest in information theory [4–6], but
also in mathematical statistics [7–9] and statistical signal
processing [10–13].

The number of zero crossings of a process contains in-
formation of the process properties in a compact form. Zero
crossing data can therefore be of interest in information
transmission with strong requirements on available band-
width where only reduced amounts of data from a process
can be sent. Furthermore, zero crossing data appear when
using sensors that can only decide if a quantity is above or
below a certain level. One example of the use of zero crossing
data of current interest within statistical signal processing is
wireless sensor networks where reduced amounts of informa-
tion are sent from simple sensors to a node center for further
processing [13].

When analyzing the statistical properties of Gaussian pro-
cess parameter estimators using zero crossing data, expres-
sions for the variance of the zero crossing rate of a process

are needed. The results in [9] are useful in this respect, allow-
ing for the exact numerical evaluation of the variance of the
zero crossing rate and also giving its asymptotics. A way to
compute the cross-covariance between the zero crossing rates
of two different processes is also needed in the analysis. The
topic of the current paper is therefore to evaluate such a cross-
covariance based on the results in [9]. To the best of the au-
thors’ knowledge, such a cross-covariance has not been eval-
uated before. The relation to prior work is mainly through [9]
as the current work is built upon the results presented there.

The rest of the paper is organized as follows. Some gen-
eral setting and definitions are given in Section 2, together
with the problem definition. The cross-covariance of zero
crossing rates and the cross-covariances of zero crossings
for two different processes are considered in Section 3. The
cross-covariance of zero crossing rates depends on cross-
covariances of zero crossings, and exact numerical evalua-
tions of as well as asymptotical expressions for the cross-
covariances of zero crossings are considered in Sections 3.1
and 3.2, respectively. A summary of the evaluation of the
cross-covariance of zero crossing rates is given in algorith-
mic form in Section 4. Numerical illustrations are given in
Section 5 and conclusions are drawn in Section 6.

2. SETTING

Here, R is used to denote real numbers, Z to denote inte-
gers, and N to denote natural numbers excluding zero. Let
(Ω,A,P) be a probability space with real-valued stochastic
processes X = (Xt)t∈Z and Y = (Yt)t∈Z. It is assumed
that X and Y are jointly Gaussian and stationary, i.e., for all
m,n ∈ N and s1, s2, . . . , sm, t1, t2, . . . tn ∈ N,

• the random vector

(Xs1 , Xs2 , . . . , Xsm , Yt1 , Yt2 , . . . , Ytn)

has a multivariate Gaussian distribution,

• the random vector

(Xs1 , Xs2 , . . . , Xsm , Yt1 , Yt2 , . . . , Ytn)
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has the same distribution as

(Xs1+k, Xs2+k, . . . , Xsm+k, Yt1+k, Yt2+k, . . . , Ytn+k)

for each k ∈ N.

It is also assumed that X and Y are non-degenerate with zero
means, i.e.,

• Var(Xs) > 0 and Var(Yt) > 0 for all s, t ∈ N,

• E[Xs] = 0 and E[Yt] = 0 for all s, t ∈ N.

Furthermore, ρxk , ρyk, ρxyk , and ρyxk are used to denote the
correlation functions of X , Y , and the functions of cross-
correlations among X and Y , respectively, i.e.,

ρxk = Corr(X0, Xk) for all k ∈ Z,
ρyk = Corr(Y0, Yk) for all k ∈ Z,
ρxyk = Corr(X0, Yk) for all k ∈ Z,
ρyxk = Corr(Y0, Xk) for all k ∈ Z.

The indicators of zero crossings in X and Y are considered
as

Cx
k := 1(Xk−1 ·Xk < 0) for k ∈ Z,

Cy
k := 1(Yk−1 · Yk < 0) for k ∈ Z.

Moreover, the sample frequencies of zero crossings are intro-
duced as

Sx
n :=

1

n

n∑
k=1

Cx
k for n ∈ N,

Sy
n :=

1

n

n∑
k=1

Cy
k for n ∈ N.

The covariance Cov(Cx
0 , C

x
k ) of the zero crossings Cx

0

and Cx
k for a single stochastic process X is studied by Sinn

and Keller [9], allowing for the exact numerical evalua-
tion of and asymptotic expressions for the variance Var(Sx

n)
of the zero crossing rate Sx

n. Here, the cross-covariance
Cov(Cx

0 , C
y
k ) of zero crossings Cx

0 and Cy
k and the cross-

covariance Cov(Cy
0 , C

x
k ) of zero crossings Cy

0 and Cx
k for

two stochastic processes X and Y are studied, allowing for
the exact numerical evaluation of as well as an asymptotic
expression for the cross-covariance Cov(Sx

n, S
y
n) of the zero

crossing rates Sx
n and Sy

n.

3. COVARIANCES

First, we note that

Cov(Sx
n, S

y
n) =

1

n2

n∑
i,j=1

Cov(Cx
i , C

y
j )

=
1

n2

(
n · Cov(Cx

0 , C
y
0 )

+

n−1∑
k=1

(n− k)Cov(Cx
0 , C

y
k )

+

n−1∑
k=1

(n− k)Cov(Cy
0 , C

x
k )
)
.

(1)

Moreover, for any k ∈ N ∪ {0},

Cov(Cx
0 , C

y
k ) = E[Cx

0 · C
y
k ]− E[Cx

0 ] · E[Cy
k ]

= P(X−1 ·X0 < 0, Yk−1 · Yk < 0)

− P(X−1 ·X0 < 0) · P(Y−1 · Y0 < 0)

= 2P(X−1 > 0,−X0 > 0, Yk−1 > 0,−Yk > 0)

+ 2P(X−1 > 0,−X0 > 0,−Yk−1 > 0, Yk > 0)

− 4P(X−1 > 0,−X0 > 0)P(Y−1 > 0,−Y0 > 0)

and analogously for Cov(Cy
0 , C

x
k ). Next, exact numerical

evaluations of Cov(Cx
0 , C

y
k ) and Cov(Cy

0 , C
x
k ) are considered

in Section 3.1 and asymptotical expressions are given in Sec-
tion 3.2.

3.1. Exact numerical evaluations

Using the notation introduced in [9, Section 2],

Cov(Cx
0 , C

y
k ) = Ψ(r), (2)

with

r = (r1, r2, r3, r4, r5, r6)

and r1 = ρx1 , r2 = r5 = ρxyk , r3 = ρxyk+1, r4 = ρxyk−1,
and r6 = ρy1 . In general, no closed-form expressions exist
for Ψ(r), but using the results in [9, Section 3], Ψ(r) can be
efficiently evaluated numerically. In [9, Section 3], it is stated
that

Ψ(r) =

5∑
i=2

ri

∫ 1

0

ψi(IHr) dH, (3)

where

IH = diag(1, H,H,H,H, 1),

IHr = (r1, Hr2, Hr3, Hr4, Hr5, r6),

r = (r1, r2, r3, r4, r5, r6),
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and where

ψ2(r) =
1

π2
√

1− r22
arcsin

(
σ24(r)√

σ22(r)σ44(r)

)
,

ψ3(r) =
1

π2
√

1− r23
arcsin

(
σ23(r)√

σ22(r)σ33(r)

)
,

ψ4(r) =
1

π2
√

1− r24
arcsin

(
σ14(r)√

σ11(r)σ44(r)

)
,

ψ5(r) =
1

π2
√

1− r25
arcsin

(
σ13(r)√

σ11(r)σ33(r)

)
,

with

σ11(r) = 1− r24 − r25 − r26 + 2r4r5r6,

σ22(r) = 1− r22 − r23 − r26 + 2r2r3r6,

σ33(r) = 1− r21 − r23 − r25 + 2r1r3r5,

σ44(r) = 1− r21 − r22 − r24 + 2r1r2r4,

σ13(r) = r2 − r1r4 + r3r4r5 − r2r25 − r3r6 + r1r5r6,

σ14(r) = r3 − r1r5 + r2r4r5 − r3r24 − r2r6 + r1r4r6,

σ23(r) = r4 − r1r2 + r2r3r5 − r4r23 − r5r6 + r1r3r6,

σ24(r) = r5 − r1r3 + r2r3r4 − r5r22 − r4r6 + r1r2r6.

In summary, the covariance in (2) can be evaluated numeri-
cally using (3).

Moreover,

Cov(Cy
0 , C

x
k ) = Ψ(r̄), (4)

with

r̄ = (r̄1, r̄2, r̄3, r̄4, r̄5, r̄6)

and r̄1 = ρy1 , r̄2 = r̄5 = ρyxk , r̄3 = ρyxk+1, r̄4 = ρyxk−1, and
r̄6 = ρx1 . Here, Ψ(r̄) can be efficiently evaluated numerically
using, yet again, (3).

3.2. Asymptotical expressions

Using the results in [9, Theorem 4.1], an asymptotically
equivalent expression is obtained. For example, in the case
ρxyk ∼ ρxyk+1 ∼ ρxyk−1 ∼ f(k), where ∼ denotes asymp-
totic equivalence and where f(k) is a function N → R with
f(k)→ 0 as k →∞, it is obtained that

Cov(Cx
0 , C

y
k ) ∼ 2(1− ρx1 − ρ

y
1 + ρx1ρ

y
1)

π2
√

(1− (ρx1)2)(1− (ρy1)2)

(
f(k)

)2
+O

((
f(k)

)4)
.

(5)

Furthermore, in the case ρyxk ∼ ρ
yx
k+1 ∼ ρ

yx
k−1 ∼ g(k), the

covariance Cov(Cy
0 , C

x
k ) is computed as

Cov(Cy
0 , C

x
k ) ∼ 2(1− ρx1 − ρ

y
1 + ρx1ρ

y
1)

π2
√

(1− (ρx1)2)(1− (ρy1)2)

(
g(k)

)2
+O

((
g(k)

)4)
.

(6)

4. ALGORITHMIC SUMMARY

The evaluation of Cov(Sx
n, S

y
n) is summarized next in algo-

rithmic form.

1. Consider expression (1) for Cov(Sx
n, S

y
n).

2. Evaluate Cov(Cx
0 , C

y
0 ) that appears in (1) using the ex-

act numerical expression (2) or the asymptotical ex-
pression (5).

3. For k = 1, . . . , n−1, evaluate Cov(Cx
0 , C

y
k ) that appear

in (1) using the exact numerical expression (2) or the
asymptotical expression (5).

4. For k = 1, . . . , n−1, evaluate Cov(Cy
0 , C

x
k ) that appear

in (1) using the exact numerical expression (4) or the
asymptotical expression (6).

5. Use the results from steps 2–4 in expression (1) for
Cov(Sx

n, S
y
n).

It is suggested to compute the covariances in steps 2–4 in
both ways for small values of k and to use the results from
the asymptotical expressions only after that the relative error
between the results is less than a certain acceptable limit.

5. NUMERICAL ILLUSTRATIONS

A diffusion process, whose properties are described in Sec-
tion 5.1, is considered in some numerical examples, where
illustrations of the theoretical results in Section 3 are given in
Section 5.2 and where empirical results from a Monte Carlo
study are given in Section 5.3. Furthermore, comparisons be-
tween theoretical and empirical results are made.

5.1. Processes

Consider the diffusion process

dX(T ) = −a0X(T )dT + dW (T )

as an example of a Gaussian process, where dW (T ) is the in-
crement of a Wiener processW (T ) with incremental variance
σ2. Consider the sampled process Xi := X(ih), where h is
the sampling interval, which is a first order discrete-time au-
toregressive process. The correlation function ρxk of the sam-
pled process Xi is given as ρxk = e−a0|k|h. Also consider
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the differenced process Yi := Xi −Xi−1, whose correlation
function ρyk is given as

ρyk =
2ρxk − ρxk+1 − ρxk−1

2(ρx0 − ρx1)
.

The cross-correlation functions ρxyk = Corr(X0, Yk) and
ρyxk = Corr(Y0, Xk) are expressed as

ρxyk =
ρxk − ρxk−1√

2(1− ρx1)
and ρyxk =

ρxk − ρxk+1√
2(1− ρx1)

,

respectively, and it holds that ρxyk = ρyx−k.

5.2. Theoretical results

The covariances Cov(Cx
0 , C

y
k ) and Cov(Cy

0 , C
x
k ) are com-

puted for the case a0 = 2, σ2 = 1, and h = 0.1. The
covariances are computed in two different ways, first using
the exact numerical expressions (2) and (4), and then using
the asymptotical expressions (5) and (6). In the asymptotical
expressions, f(k) = ρxyk in (5) and g(k) = ρyxk in (6). The
results are illustrated in Figures 1 and 2 for k = 0, . . . , 10,
where it is seen how well the asymptotical expression ap-
proximates the exact numerical expression.

The covariance Cov(Sx
n−2, S

y
n−2) between the zero cross-

ing rates Sx
n−2 and Sy

n−2 in (1) is computed for n = 10000,
first using covariances Cov(Cx

0 , C
y
k ) and Cov(Cy

0 , C
x
k ) com-

puted with the exact numerical expressions (2) and (4), and
then using covariances computed with the asymptotical ex-
pressions (5) and (6). The results are presented in Table 1,
where it is seen how much the results based on the two differ-
ent computations differ.

5.3. Empirical results

Data Xi and Yi are generated for the case a0 = 2, σ2 = 1,
h = 0.1, and n = 10000. The zero crossings Cx

k and Cy
k

as well as the zero crossing rates Sx
n−1 and Sy

n−2 are regis-
tered. In order to get empirical results for Cov(Cx

0 , C
y
k ) and

Cov(Cy
0 , C

x
k ) as well as for Cov(Sx

n−2, S
y
n−2), the data gen-

eration and the registration of zero crossing rates are repeated
106 times in a Monte Carlo study.

The results for Cov(Cx
0 , C

y
k ) and Cov(Cy

0 , C
x
k ) are illus-

trated in Figures 1 and 2, respectively, for k = 0, . . . , 10. It is
seen how well the empirical covariances are described by the
exact numerical expressions. The curves are indeed indistin-
guishable.

In Table 1, the result for Cov(Sx
n−2, S

y
n−2) is presented. It

is clear that the empirical covariance between the zero cross-
ing rates is described by the theoretical expression based on
covariances computed with the exact numerical expression.

6. CONCLUSIONS

An exact numerical expression as well as an asymptotic ex-
pression for the cross-covariance between the zero crossing

Fig. 1. Asymptotical, exact numerical, and empirical covari-
ances Cov(Cx

0 , C
y
k ), k = 0, . . . , 10.

Fig. 2. Asymptotical, exact numerical, and empirical covari-
ances Cov(Cy

0 , C
x
k ), k = 0, . . . , 10.

Table 1. Theoretical and empirical covariances
Cov(Sx

n−2, S
y
n−2) between zero crossing rates Sx

n−2
and Sy

n−2. Theoretical results are obtained by using the exact
numerical (e.n.) expressions in (2) and (4) as well as the
asymptotical (a.) expressions in (5) and (6).

Cov(Sx
n−2, S

y
n−2)

Theoretical Empirical
3.13 · 10−6 (e.n.) 3.12 · 10−6

3.85 · 10−6 (a.)

rates of two jointly Gaussian and stationary processes have
been presented. The evaluation of the cross-covariance has
been summarized in algorithmic form and the expressions
have been illustrated numerically. The expressions are useful
when analyzing the statistical properties of Gaussian process
parameter estimators using zero crossing data.
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