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ABSTRACT

Most of the tests proposed in the literature to verify if a given
random multivariate dataset fits a spherical or elliptical dis-
tribution are designed for real valued data and rely on the
estimation of high order moment matrices. Recently, a test
that considers complex random vectors, derived based on
the Schott spherical symmetry test was proposed aiming in a
more proper analysis of PolSAR data. Results showed its ef-
fectiveness in discriminating data that fits or not the complex
spherically invariant random vector model (product model),
inherent to high resolution heterogeneous PolSAR systems.
Within this context, this paper further extends the assessment
of the referred test efficiency, verifying its performance under
different stochastic model assumptions and comparing the
results with the ones achieved when the Schott test derived
for real random vectors is employed.

Index Terms— Polarimetric Synthetic Aperture Radar,
Multiplicative model (SIRV), Spherical symmetry test

1. INTRODUCTION

Testing for spherical or elliptical distributions in multivari-
ate random data is not a relative new subject in neither signal
processing nor statistics community [8, 9, 10]. Nevertheless,
most of the tests described in the literature are designed for
real valued data and rely on the estimation of high order mo-
ment matrices [11, 12]. When complex random variables are
under analysis, which is the case of PolSAR data, the per-
formance of the aforementioned tests can be compromised.
Extending an m × 1 complex random vector into a 2m × 1
real vector is not always straightforward. Furthermore, such
mapping (C → R) doubles the dimensionality of the problem,
increasing significantly the complexity of the algorithms.

According to [5], one of the most powerful spherical
symmetry tests was proposed in [6] for real random vectors.
Recently, a general framework which allows quantitative
evaluation of fitting complex spherically invariant random
vectors, based on the latter, was proposed to better analyse
a given multidimensional PolSAR dataset [3]. Polarimetric
Synthetic Aperture Radar (PolSAR) data describes the inter-
action between the electromagnetic waves and the scatters

inside a resolution cell, for each polarimetric state of the
former. High heterogeneity scenes (inherent to high resolu-
tion systems) may eventually lead to non-Gaussian clutter
modelling. SIRVs (Spherically Invariant Random Vectors),
have then been constantly employed for modelling high-
resolution POLSAR data [1, 2]. The SIRV is a multiplicative
model expressed as a product between the square root of a
scalar positive quantity (texture) and the description of an
equivalent homogeneous surface (speckle). It is important to
highlight that in the SIRV definition, the texture probability
density function is not explicitly specified. As a consequence,
SIRVs describe a whole class of stochastic processes.

Results showed that, for this given application, the re-
ferred test presents a good performance when the texture is as-
sumed to have a Gamma distribution. In the present work, the
performance of the test is further extended considering differ-
ent texture distributions. Furthermore, a comparison with the
results achieved considering the Schott test for real random
vectors is also performed.

In Section II we introduce the SIRV stochastic model of
PolSAR data [2]. Section III presents the Schott test for as-
sessing the spherical symmetry properties of real random vec-
tors and the recently proposed alternative for complex random
vectors. In Section IV, the performance of the aforementioned
tests are verified taken into consideration a synthetic dataset.
Finally, in Section V some conclusions are drawn.

2. POLSAR DATA PRODUCT MODEL

For an m-dimensional PolSAR system (m ≤ 4), in each ith
azimuth / range location, ki is the m × 1 complex target
vector corresponding to the same area on the ground. For
distributed targets, the corresponding k vector is considered
non-deterministic and may be written, under the SIRV model
assumption. The SIRV is a class of non-homogeneous Gaus-
sian processes with random variance [2], also referred in the
literature as product or multiplicative model. It is an im-
portant subclass of Complex Elliptically Symmetric Distribu-
tions (CES), or simply compound-Gaussian [4], where each
m-dimensional observation vector k is defined as

k =
√
τ · z (1)
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where z is an independent complex circular Gaussian vec-
tor, characterising the speckle, with zero mean and covari-
ance matrix of the form [T ] = σ0 · [M ], such that Tr{|M |}
= 1 and σ0 is the total power (span). In (1), τ represents
the texture, a positive random variable characterising the spa-
tial variations in the radar backscattering, statistically inde-
pendent of the speckle. The probability density function of
the texture random variable is not explicitly specified by the
mode, therefore, the SIRV model describe a wide range of
well known specific models. For a more detailed description
of such class of random vectors, the reader is advised to go to
[4].

3. SHOTT’S APPROACH FOR TESTING
SPHERICAL SYMMETRY OF RANDOM VECTORS

The test proposed by Schott [6] consists in verifying if the
structure of the sampled data fourth order moment (quadri-
covariance matrix) matches the one of Elliptical Symmetric
Distributions (CES). Assuming that the sample m×n dataset
is extracted from a finite second order moment elliptical dis-
tribution with zero mean vector and covariance matrix [M ].
The fourth order moment matrix [M ]4 = E

[
kkH ⊗ kkH

]
is

given by

[M ]4 = (1 + ω) [(Im2 +Kmm) ([M ]⊗ [M ])] (2)

where Kmm is a commutation matrix, [· ]H is the complex
transpose operator and ⊗ is the Kronecker product operator.
Note that 2 is valid for both complex and real random vectors,
when [· ]H can be simply replaced by the transpose operation
([· ]T ).

The sample quadricovariance estimator can be expressed
in terms of the Kronecker product as

[̂M ]4 =
1

n

n∑
i=1

kik
H
i ⊗ kik

H
i (3)

Its corresponding standardized form is given by

[̂M ]4∗ =

(
[̂M ]

− 1
2
H

⊗ [̂M ]
− 1

2
H)

[̂M ]4

(
[̂M ]

− 1
2 ⊗ [̂M ]

− 1
2

)
(4)

where [̂M ]
− 1

2 · [̂M ]
− 1

2
H

= [̂M ]
−1

.

At this point, the test derivation of real and complex ran-
dom vectors present different particularities, which are prop-
erly addressed in the next couple of sections.

3.1. Real random vectors spherical symmetry test

According to the Schott’s theorem, the Wald test statistic for
spherical symmetry can be expressed as:

Treal = N{β1tr
(
[̂M ]

2

4∗

)
+

β2vec
(
[̂I]m

)H

[̂M ]
2

4∗vec
(
[̂I]m

)
−

[3β1 + (m+ 2)β2]m(m+ 2)(1 + κ̂)2} (5)

where vec(· ) is the operator that transforms a matrix into a
column vector and

β1 = (1 + θ̂)−1/24, (6)

β2 = −3a[24(1 + θ̂)2 + 12(m+ 4)a(1 + θ̂)]−1, (7)

a = (1 + θ̂) + (1 + κ̂)3 − 2(1 + κ̂)(1 + η̂) (8)

with the Mardia’s kurtosis κ̂ and the generalized higher order
scalar moments θ̂, η̂ given by:

(1 + κ̂) =
1

m(m+ 2)n

n∑
i=1

[
kH
i [̂M ]

−1
ki

]2
, (9)

(1 + θ̂) =
1

nm(m+ 2)(m+ 4)

n∑
i=1

[
kH
i [̂M ]

−1
ki

]3
, (10)

(1+η̂) =
1

nm(m+ 2)(m+ 4)(m+ 6)

n∑
i=1

[
kH
i [̂M ]

−1
ki

]4
.

(11)
Asymptotically, TSchott → χ2

freal
with freal = m2 +

m(m−1)(m2+7m−6)
24 − 1 as in [6]. It has been proven in [7]

that the Wald test and the LRT are asymptotically equivalent.

3.2. Complex random vectors spherical symmetry test

In [3], a new procedure to test the spherical symmetry of com-
plex random vectors data was proposed, based on what had
been previously done by Schott with real valued random vec-
tors [6]. Considering 4 and assuming that A = [̂M ] − [M ]

and C = [̂M ]4 − [M ]4, it is shown in [3] that

vec([̂M ]4∗) = (1 + ω)vec([N ]4) + vec(C)

−(1 + ω)Hvec(A) +Op(n
−1/2) (12)

where [N ]4 is what [M ]4 simplifies to when ki ∼ CNm(0, Im)
and H is an operator given by

H = [Im2 ⊗ (Im2 +Kmm)] ·
{Im ⊗ [(Kmm ⊗ Im) · (Im ⊗ vec(Im))]

+[(Im ⊗Kmm) · (vec(Im)⊗ Im)]⊗ Im} (13)
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Note that (12) is asymptotically equals to vec([̂M ]4∗) =
(1 + ω)vec([N ]4) + Op(n

−1/2). Therefore, defining G =
ρ−1vec(N4)vec(N4)

T , with ρ = vec(N4)
T vec(N4), it is possi-

ble to state that Gvec([̂M ]4∗) is a consistent estimator of [M4]
if and only if [M4] has the structure defined in (2). Hence,
assuming that the latter is true, it is of common knowledge
that

n1/2v = n1/2(Im4 −G)vec
(
[̂M ]4∗

)
(14)

is asymptotically normal with zero mean and cov. matrix

Φ = (Im4 −G)Ξ(Im4 −G) (15)

where Ξ denotes the asymptotic cov. matrix of n1/2vec([̂M ]4∗).
From (12), Ξ can be written as

Ξ = [M ]C − (1 + ω)[M ]C,AH
H − (1 + ω)H[M ]A,C

+(1 + ω)2H[M ]AH
H (16)

where [M ]C is the covariance matrix of vec(C), [M ]A is
the covariance matrix of vec(A), and [M ]Q,R is the cross-
covariance matrix between Q and R. In [3], it is shown
that

[M ]A = (1 + ω)(Im ⊗ Im) + ω
(
vec(Im)vec(Im)T

)
(17)

[M ]C = (1 + θ)(1 + ω)2(NT
4 ⊗N4)

+θ(1 + ω)2vec(N4)vec(N4)
T (18)

[M ]C,A = (1 + η)
∑
i

(ei ⊗ Im3)N6(ei ⊗ Im2)

−(1 + ω)vec(N4)vec(Im)T (19)

where ei denotes the ith column of the identity matrix Im.
The Wald test for complex-valued signals states that

T = nvHΓv (20)

has an asymptotic chi-squared distribution with degrees of
freedom f equal to the rank of Φ if Γ is a consistent estima-
tor of a generalised inverse of the latter. Note that the latter
is obtained by specifying ω̂, η̂, θ̂, respectively consistent esti-
mators of ω, η and θ. They are given by [3]

ω̂ =
1

nm(m+ 1)

n∑
i=1

[
kHi [̂M ]

−1
ki

]2
(21)

η̂ =
1

nm(m+ 1)(m+ 2)

n∑
i=1

[
kHi [̂M ]

−1
ki

]3
(22)

θ̂ =
1

nm(m+ 1)(m+ 2)(m+ 3)

n∑
i=1

[
kHi [̂M ]

−1
ki

]4
(23)

Summarising, the proposed framework for the complex
elliptical symmetry starts with the estimation of (21), (22)
and (23). Next, (18), (19) and (17) are calculated and con-
sequently, (16) is derived. Then (15) is used along with (14)
into (20) and the test is finally finished. The degrees of free-
dom of the test is equal to the rank of Φ and is given by [3]

fcomplex = m2 +
m(m− 1)(m2 + 19m+ 6)

24
− 1 (24)

4. SYNTHETIC DATA ANALYSIS

The synthetic data used in the present analysis is divided into
6 regions, each containing 100 x 100 samples of a specific
type of heterogeneous clutter. Three different probability dis-
tributions for the texture were taken into consideration in the
analysis: Gamma, Inverse Gamma and Weibull. These distri-
butions were chosen given their high correspondence to nat-
ural phenomenons [1]. For each distribution, two datasets
are generated. One considering the texture polarization in-
dependent (fitting the SIRV model) and the other consider-
ing the texture polarization dependent (not fitting the SIRV
model). It is important to highlight that the ability to cor-
rectly discriminate between these two types of datasets is cru-
cial for proposing more efficient detection, classification and
geophysical parameters inversion algorithms in PolSAR data
analysis.

The shape and scale parameters that characterises the tex-
ture random variables for each region are such that their mean
are fixed and set to 1. With no loss of generality, the speckle
covariance matrix, [M ], was kept the same for all regions and
given by the identity matrix I3. Figure 1 presents the output
of the tests described in the previous section, where, in green,
are the non spherical symmetric pixels, backgrounded by the
data span.

Fig. 1: Spherical symmetry tests map.

It is important to mention that a key point in the analysis
of statistical tests performance is the choice of the set of sam-
ples (size and location within the data) used in the derivation
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of their stochastic properties. Since the synthetic data used
in the present study is composed by homogeneous regions,
a sliding window approach is sufficient for the definition of
the set of samples used. The size of the sliding window was
chosen to be 15, a proper choice for the given application [3].
Finally, the tests confidence levels were set to 0.99.

Note that the test designed specifically for complex ran-
dom variables outperforms the test designed for real random
vectors considering a 2m × 1 vector. Furthermore, note that
both tests performance are dependent on the texture proba-
bilistic distribution. The percentage of pixels correctly iden-
tified as not fitting the SIRV model in the polarization depen-
dent texture datasets are presented in Table 1.

Table 1: Percentage of pixels correctly identified as not fit-
ting the SIRV model in the polarization dependent texture
datasets.

Texture Distribution Complex test Real test
Inverse Gamma 73% 33%

Gamma 83% 73%
Weibull 61% 21%

5. CONCLUSION

This paper addressed a comparison of performance between
the recently proposed spherical symmetry test for complex
random vectors [3] and the Schott test derived for real random
vectors in PolSAR data analysis. The analysis showed that for
specific types of PolSAR clutter and taking into consideration
design parameters better suited for such application (window
size and confidence level) the performance of the latter is not
as good as the performance of the test specially suited for such
type of data. Furthermore, it was shown that, the performance
of both tests are dependent of the texture probabilistic distri-
bution. Finally, it is important to highlight that when the latter
is assumed to have a Gamma distribution (a good representa-
tive of many natural phenomenons), both tests (complex and
real) present a good performance. Nevertheless, the same be-
haviour is not verified for other distributions, such as Weibull.
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