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ABSTRACT

In this paper we discuss a class of models for time series
of low count data based on the Generalized Linear Model
(GLM) approach. Unlike the traditional Auto-Regressive
Moving-Average (ARMA) models for continuous Gaussian
data, these models capture both the temporal correlation
structure and the discrete marginal distribution of count data.
We focus on the properties, parameter estimation, and model
adequacy aspects for count time series with Poisson or Neg-
ative Binomial conditional distributions. The properties and
performance of these models are illustrated with synthetic
and real data.

1. INTRODUCTION

Time series of counts are obtained in various disciplines
whenever a number of events is counted during certain time
periods. Examples include the monthly number of car acci-
dents in a region, the weekly number of new cases in epidemi-
ology, the number of transactions at a stock market per minute
in finance, or the number of photon arrivals per microsecond
in a focal plane array. Modeling low-count time series with
ARMA models, which are a popular choice for continuous
Gaussian data, leads to inadequate performance. The reason
is that ARMA models can capture the temporal correlation
structure but fail to refelct the marginal distribution.

Various types of count time series models have been pro-
posed over the years to describe their marginal distribution
and correlation structure. In general, these models can be
broadly classified into two types: ARMA models based on the
notion of thinning and ARMA models based on the GLM ap-
proach. Integer ARMA models, which replace multiplication
with a “thinning” operation, are discussed in [1]. We focus
on count time series models using the GLM approach [2, 3]
because they provide a parsimonious manner with which to
model count data.

A typical method of estimation is Quasi-Maximum Like-
lihood Estimation (QMLE) [4], which in the Negative Bi-
nomial (NB) case may result in non-stationary models. In
this paper, we introduce the Conditional Maximum Likeli-

hood Estimation (CMLE) estimator for the NB, which can be
constrained to ensure stationarity. This paper is organized as
follows: in Section 2 we introduce count distributions, in Sec-
tion 3 we discuss how these distributions are used to model
correlated time series, in Section 4 we discuss estimation of
these models, and in Section 5 we discuss estimation results
using synthetic data and give a real world data example.

2. DISTRIBUTIONS FOR COUNT DATA

An Independently and Identically Distributed (IID) sequence
of Poisson random variables is specified by

Yt ∼ Pois(λ) =
exp(−λ)λy

y!
, t ≥ 1, y = 0, 1, 2, . . . (1)

where E(Yt) = Var(Yt) = λ (equidispersion). Many practical
time series exhibit overdispersion, that is, Var(Yt) > E(Yt).

Consider next a Poisson distribution with mean λZ,
where Z > 0 is a random variable with E(Z) = 1 and
Var(Z) = σ2

z . The conditional distribution of Yt given Z = z
is

Yt|z ∼ Pois(λz) =
exp(−λz)(λz)y

y!
(2)

The unconditional mean and variance are

E(Yt) = E[E(Yt|z)] = E(λZ) = λE(Z) = λ (3)
Var(Yt) = E[Var(Yt|Z)] + Var[E(Yt|Z)]

= λ+ λ2σ2
z (4)

We note that the variability of the conditional mean creates
overdispersion. We use the normalization E(Z) = 1 to ensure
that E(Yt) = λ. This is the multiplicative analog to the linear
(additive) model case Y = λ+W with E(W ) = 0.

We usually assume that Z follows a Gamma distribution
with shape parameter a > 0 and scale parameter b > 0 de-
fined by

f(z; a, b) =
za−1e−z/b

Γ(a)ba
, z ≥ 0 (5)
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The mean and variance are E(Z) = ab and Var(Z) = ab2. To
ensureE(Z) = 1, we set a = ν and b = 1/ν, which results in
Var(Z) = 1/ν. The result is the single parameter distribution

f(z; ν) =
ννzν−1e−zν

Γ(ν)
, z ≥ 0, ν > 0 (6)

This Poisson-Gamma mixture results in the NB distribution,
denoted by NegBin(λ, ν), and given by

f(y; ν) =

∫ ∞
0

f(y|z)f(z; ν)dz

=
Γ(ν + y)

Γ(ν)Γ(y + 1)

(
ν

ν + λ

)ν (
λ

ν + λ

)y
(7)

The mean and variance of which are

E(Y ) = λ, Var(Y ) = λ+
1

ν
λ2 > E(Y ) (8)

The NB distribution is widely used to model IID count data
with overdispersion.

3. LINEAR MODELS FOR COUNT TIME SERIES

In the traditional Gaussian linear models we introduce cor-
relation by filtering a white Gaussian noise process. Since
this is impossible for count (integer) time series we follow a
different approach. To this end suppose that the conditional
distribution of Yt given the values of the past observations
Yt−1 = {Yt−1, Yt−2, . . . } is given by

Yt|Yt−1 ∼ Pois(λt) or Yt|Yt−1 ∼ NegBin(λt, ν) (9)

where the parameter λt changes with time.
In the linear count time series model, λt varies according

to a hidden or latent process given by

λt = d+ a1λt−1 + b1Yt−1, t ≥ 1 (10)

Since λt > 0, we must have d > 0 and {a1, b1} ≥ 0.
Repeated substitution in (10) shows that

λt = d
1− at1
1− a1

+ at1λ0 + b1

t−1∑
i=0

ai1Yt−i−1 (11)

The stability of the recursion for λt requires that |a1| < 1.
To understand the properties of the Poisson linear model,

we express (10) as follows

Yt = λt + (Yt − λt) = λt + εt

= d+ a1λt−1 + b1Yt−1 + εt

= d+ a1(Yt−1 − εt−1) + b1Yt−1 + εt

= d+ (a1 + b1)Yt−1 + (εt − a1εt−1), (12)

where εt = Yt − λt is a white noise process [5] with

E(εt) = 0, Var(εt) = E(Yt), Cov(εt, εt+`) = 0, ` > 0
(13)

Thus, we obtain the ARMA-like innovations representation

(Yt −m) = (a1 + b1)(Yt−1 −m) + εt − a1εt−1 (14)

where

m = E(Yt) =
d

1− (a1 + b1)
(15)

The condition 0 < a1 + b1 < 1 ensures stationarity and that
m > 0.

The variance of the Poisson linear model is

Var(Yt) =
1− (a1 + b1)2 + b21

1− (a1 + b1)2
m (16)

Since Var(Yt) ≥ E(Yt), with equality when b1 = 0, the
marginal distribution of Yt is not Poisson.

The marginal mean of the NB linear model is identical
with that of the Poisson model. However, the marginal vari-
ance of the NB model is larger than that of the Poisson model

Var(Yt) =
1− (a1 + b1)2 + b21

1− (a1 + b1)2 − b21
ν

(
m+

m2

ν

)
(17)

The Auto-Covariance Function (ACVF) function CY (`) =
Cov(Yt, Yt+|`|) of the NB linear model for |`| ≥ 1 is given by

CY (`) = b1
1− a1(a1 + b1)

1− (a1 + b1)2 − b21
ν

(
m+

m2

ν

)
(a1 + b1)|`|−1

(18)
The serial correlation of the Poisson and NB models is the
same. We note that as ν →∞, Var(Zt) = (1/ν)→ 0 and the
NB distribution becomes the Poisson distribution. To model
negatively correlated data, the log-linear model found in [6,7]
can be considered.

4. MODEL PARAMETER ESTIMATION

Consider the general linear model

λt = d+

q∑
i=1

aiλt−i +

p∑
j=1

bjYt−j (19)

The log-likelihood function of the linear NB model is

l(θ, ν) =

N∑
t=1

[
log

Γ(yt + ν)

Γ(yt + 1)Γ(ν)
+ ν log

ν

ν + λt(θ)

+ yt log
λt(θ)

ν + λt(θ)

] (20)
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Table 1. Results of model estimation for an aggregate set of 1000 time series of length 1000 for each model. The first row for
each model shows the mean of the estimator, and the second shows the standard errors. The last row shows how many of the
unconstrained estimates of ν̂2 were outside the region of stationarity.

Model QMLE CMLE Misc.

d̂ b̂1/b̂3 â1/b̂2 ν̂1 ν̂uc2 ν̂c2 b̂0 b̂1/b̂3 â1/b̂2 ν̂ ν∗ ν̂uc ≤ ν∗

(b0, b1, a1, ν) = 0.54 0.49 0.40 1.54 1.52 1.70 0.55 0.49 0.39 1.52 1.32 198
(0.50, 0.50, 0.40, 1.52) 0.11 0.06 0.06 0.15 0.14 0.89 0.17 0.05 0.06 0.11
(b0, b1, a1, ν) = 0.53 0.50 0.39 6.48 6.35 6.45 0.52 0.50 0.39 6.41 1.32 0
(0.50, 0.50, 0.40, 6.32) 0.09 0.04 0.04 1.03 0.78 0.79 0.09 0.03 0.04 0.73
(b0, b1, a1, ν) = 1.09 0.69 0.19 2.80 2.77 3.15 1.07 0.70 0.19 2.80 2.58 278
(1.00, 0.70, 0.20, 2.78) 0.18 0.05 0.05 0.28 0.25 2.35 0.17 0.04 0.05 0.23
(b0, b1, a1, ν) = 1.07 0.70 0.19 7.73 7.60 7.69 1.03 0.70 0.20 7.65 2.58 1
(1.00, 0.70, 0.20, 7.58) 0.17 0.04 0.05 0.94 0.79 0.80 0.14 0.04 0.04 0.73
(b0, b1, b2, ν) = 1.01 0.49 0.36 3.13 3.07 3.28 1.00 0.49 0.36 3.11 2.90 141
(1.00, 0.50, 0.40, 3.10) 0.17 0.05 0.06 0.32 0.28 0.84 0.17 0.04 0.06 0.22
(b0, b1, b2, ν) = 1.01 0.49 0.37 8.04 7.88 8.01 1.00 0.49 0.37 7.99 2.90 1
(1.00, 0.50, 0.40, 7.90) 0.16 0.04 0.05 1.11 0.85 0.86 0.16 0.03 0.05 0.74

where θ = (d, a1, . . . , aq, b1, . . . , bp) and λt(θ) Specifies
the mean at time t. Maximization is performed in the (con-
strained) parameter spaces

ΘL = {d > 0, ai ≥ 0, bj ≥ 0,
∑
i

ai +
∑
j

bj < 1}

In practice, under the mixed Poisson model assumption, it is
preferable to estimate θ by minimizing the quasi-likelihood

l(θ) =

N∑
t=1

{yt log λt(θ)− λt(θ)} (21)

under the constraints imposed upon the parameters of each
model. Maximization of (21) under a conditional Poisson
distribution is CMLE of the Poisson linear model, which is
discussed in [3]. Under the conditional NB distribution max-
imization of (21) is QMLE of the NB linear model, discussed
in [4, 8]. The dispersion parameter ν is then estimated inde-
pendently. In [4] the authors suggest the use of either

ν̂ =

 1

n

N∑
i=1

[
(Yt − λ̂t)2 − λ̂t

]
λ̂t

2

−1 (22)

which is a moment based estimator, or

N −M =

N∑
t=1

(Yt − λ̂t)2

λ̂t(1 + λ̂t

ν )
(23)

which is based on statistics of the NB distribution and solved
for ν, and M represents the dimension of θ. While this
methodology is convenient, it suffers in that it can result in
estimates corresponding to non-stationary models. To see this

we re-write (19) in an ARMA-like representation

Yt = d−
s∑
i=1

(ai + bi)Yt−k + εt +

q∑
j=1

ajεt−k (24)

where s = max(p, q), ai = 0, i > q, bi = 0, i > p. Equa-
tion (24) can be equivalently re-written as an infinite moving-
average process from which we find

Var(Yt) =

(
1 +

∞∑
k=1

ψ2
k

)
Var(εt) (25)

Under the assumption of an NB conditional distribution we
observe

Var(εt) = Var [E (εt|Yt−1)] + E [Var (εt|Yt−1)]

= m+
E
(
λ2t
)

ν
(26)

Using (26) it can be shown that

Var(Yt) =

(
νm+m2

) (
1 +

∑∞
k=1 ψ

2
k

)
ν −

∑∞
k=1 ψ

2
k

(27)

from which we observe that

ν >

∞∑
k=1

ψ2
k = ν∗ (28)

must be true to ensure Var(Yt) exists. QMLE suffers in that by
separating estimation of θ and ν it loses the ability to simul-
taneously constrain the parameter space. Instead we suggest
direct maximization of (20), which is CMLE of the NB linear
model.
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Fig. 1. Results of one step estimation on the Nuclear Tests data set. The top plots shows the data; the bottom left plot zooms
in on the last 50 points and shows a single additional point marked with a red x; the bottom right plot shows Normal(red),
Poisson(Blue), and NB(green) one-step predictive distributions.

5. ESTIMATION RESULTS

Table 1 shows estimation results using QMLE and CMLE
for several linear NB models. For each model two differ-
ent values of ν were chosen {ν∗ + .5, ν∗ + 5} to investi-
gate performance near and far from the stationarity bound-
ary. Results were generated by simulating 1000 time series
of 1000 observations and using both the QMLE and CMLE
algorithms to perform parameter estimation. Estimation of ν
for QMLE was performed using both (22), denoted by ν1, and
(23), denoted by ν2. Additionally, evaluation of ν̂2 was per-
formed both constrained and unconstrained. The estimator ν̂
for CMLE was constrained as well.

The first row of each model in Table 1 shows the mean es-
timators whereas the second row reports the standard errors.
Comparing QMLE and CMLE for θ̂ shows that both estima-
tors perform equally well in terms of both bias and conver-
gence. This is not the case however, for estimating ν. When
ν is far away from the boundary constraining the solution of
ν̂2 has little to no effect on the bias and convergence, and the
estimator has similar bias and standard error to the CMLE
estimator.

When ν is close to the stationarity boundary however,
constraining ν̂2 drastically biases the estimator and increases
the standard error. We do not observe this phenomenon
with the CMLE estimator of ν since the constrained space
is always considered. For each model where ν is near the
boundary a sizable portion of the unconstrained estimators
give non-stationary results, reflected in the last column of Ta-
ble 1. The moment based estimator ν1 performs worse than
the constrained CMLE estimator and additionally cannot be
constrained. Additionally, as observed in [4] this estimator
performs worse than the unconstrained version ν̂2, therefore
we do not suggest its use.

Another advantage CMLE has over QMLE is that it natu-
rally provides standard errors on ν̂ via the conditional likeli-

hood information matrix. If one uses QMLE, a bootstrapping
technique using the estimated model must be performed to
find such bounds. This can be problematic when the estimates
are either non-stationary if the estimator is unconstrained or
biased if they are.

Figure 1 shows an application of the linear models to a test
set counting the number of nuclear tests performed monthly
by the United States between 1961 and 1992 [9]. We observe
that due to the low count values of the data, the one-step pre-
dictive distribution using an ARMA model, shown in red, fits
poorly. The Poisson model in blue, and the NB in green both
appear to fit the data much better.

6. CONCLUSION

This paper has shown that while QMLE and CMLE can both
be used for estimation of NB linear models, CMLE has the
benefit of being able to naturally constrain the parameter
space. Additionally, the CMLE estimator produces standard
errors on the estimate of ν, whereas the QMLE must resort
to bootstrapping. This can suffer from either non-stationary
model estimates if the estimator of ν is left unconstrained
or bias if the estimator is constrained. We have additionally
shown how we can find the marginal variance of any NB
linear model, which is important in understanding the model
dynamics for higher order and non-trivial models.
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