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ABSTRACT

In 2013, Nguyen and Yamada proposed Adaptive normalized

quasi-Newton algorithm and its adaptive step size for accurate and

stable extraction of the first generalized eigenvector. The adaptive

step size is determined by an upper bound of the condition number

of a time-varying matrix. However, the employed upper bound is

fairly tight only when the size of matrix is small, which degrades

the performance of the algorithm for general case. In this paper,

we propose new adaptive step sizes with aid of tighter upper bounds

of the condition number. The proposed adaptive step sizes can be

implemented efficiently, which are the same calculation order with

the original adaptive step size. Numerical experiments show that the

proposed adaptive step sizes succeed in extending the applicability

of the algorithm.

Index Terms— Generalized Hermitian eigenvalue problem

(GHEP), Adaptive normalized quasi-Newton algorithm, Upper

bound of condition number, adaptive step size

1. INTRODUCTION

Generalized Hermitian eigenvalue problem (GHEP) is a problem of

finding vectors vi ∈ C
N \ {0}, for a pair of Hermitian positive

definite matrices (Ry,Rx) ∈ C
N×N × C

N×N , satisfying

Ryvi = λiRxvi s.t. v
H
i Rxvj = δi,j (i, j = 1, 2, . . . , N ),

where λi (λ1 ≥ λ2 ≥ · · · ≥ λN > 0) is called the ith principal

generalized eigenvalue, (·)H stands for the conjugate transpose of a

vector or a matrix, and δi,j is the Kronecker delta function. We call

(Ry,Rx) and vi respectively a matrix pencil and the ith principal

generalized eigenvector of (Ry,Rx). The GHEP has been attracting

great attention in many branches of signal processing, e.g., subspace

tracking [1], [2], blind source separation [3], fault detection [4], pat-

tern recognition [5], and array signal processing [6]–[10].

Since for many applications of signal processing, the pair of co-

variance matrices (Ry,Rx) of input signal are unknown a priori,

we have to estimate simultaneously the matrix pencil (Ry,Rx) and

generalized eigenvectors. For example (Ry,Rx) is estimated as co-

variance matrices of input sequences (y(k))k≥0, (x(k))k≥0, where

k denotes discrete time index, by
{

Ry(k + 1) = βRy(k) + y(k + 1)y(k + 1)H ,
Rx(k + 1) = αRx(k) + x(k + 1)x(k + 1)H .

(1)

To solve such problems, adaptive estimator of vi is required but very

few effective adaptive estimators are proposed, e.g., [11]–[14]. In

[14], Adaptive normalized quasi-Newton algorithm with adaptive

step size was proposed, for accurate and stable estimation of the
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first principal (or minor) generalized eigenvector, where a best upper

bound of the condition number [15] of R(k) := R−1

x (k)Ry(k) is

employed to determine adaptive step size. This bound is a best in the

sense that it achieves the supremum of condition numbers of all posi-

tive definite matrices of given trace and determinant of R(k) and N .

However, since the upper bound increases exponentially w.r.t. N ,

the adaptive step size [14] works effectively only when N is small.

In this paper, we propose new adaptive step sizes with aid of

tighter upper bounds of the condition number of R(k). Tighter

upper bounds are derived from both R(k) and its inverse matrix

R−1(k) (= R−1

y (k)Rx(k)). The first proposed adaptive step size

is designed based on upper bounds in terms of both Frobenius norms

and traces of these matrices and N . The calculation cost for this up-

per bound is a bit large compared with the original step size in [14]

but the increasing speed is linear w.r.t. N . The second proposed

adaptive step size is designed based on a best upper bound in terms

of traces and N only. Indeed, it achieves the supremum of condition

numbers of all positive definite matrices of given traces of R(k) and

R−1(k) and N . Though the calculation cost of this bound is almost

the same as that of the original adaptive step size in [14], the in-

creasing speed is in proportion to N2. Numerical experiments show

that, in a scenario of subspace tracking, estimation with proposed

adaptive step sizes is applicable to larger N than estimation with the

original adaptive step size.

2. PRELIMINARIES

Let R and C be the sets of all real and complex numbers. Bold face

capital and bold face small letters respectively express a matrix and

a vector. The the B-norm of x := (x1, x2, . . . , xN)T ∈ C
N is

defined as ‖x‖B :=
√
xHBx, where B ∈ C

N×N is a Hermi-

tian positive definite matrix and (·)T stands for the transpose. Let

A ∈ C
N×N be a positive definite matrix (not necessarily Hermi-

tian matrix), with eigenvalues λ1 ≥ · · · ≥ λN > 0. We de-

note the trace, determinant, and Frobenius norm of A respectively

by tr(A), det(A), and ‖A‖F :=
√∑

N
i,j=1

|ai,j |2, where ai,j is

the (i, j) component of A. Sum and product of the eigenvalues of

A coincide with tr(A) and det(A), i.e., tr(A) =
∑N

i=1
λi and

det(A) =
∏N

i=1
λi. The condition number of A is denoted by

κ(A) := λ1/λN . For self-containedness, we present a summary

of the adaptive eigenvector extraction in [14].

2.1. Normalized quasi-Newton algorithm

Algorithm 1 (Normalized quasi-Newton algorithm [14]) is an esti-

mator of the first principal (or minor) generalized eigenvector of a

matrix pencil (Ry,Rx). This algorithm is known for stability and

high accuracy of estimation. For convergence of the estimate, the

step size η must be selected as

η ∈ (0, 2/(κ(R)− 1)) , (2)
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where R := R−1

x Ry. In this paper, we only focus on the estima-

tion of the first principal generalized eigenvector extraction because

we can estimate first r (≤ N ) principal generalized eigenvectors vi

(1 ≤ i ≤ r) by combining Algorithm 1 with [16].

2.2. Adaptive estimation of generalized eigenpair

For many applications of signal processing, it is important to solve

the generalized eigenvalue problem of the matrix pencil defined by

the pairs of covariance matrices. Let Ry,Rx be covariance matrices

of input sequences (y(k))k≥0 and (x(k))k≥0, where k denotes the

discrete time index. In general, the covariance matrices are unknown

a priori and we have to estimate them, e.g., by (1), where (Ry(k),
Rx(k)) is an estimate of the matrix pencil (Ry , Rx). Then, we

must estimate the matrix pencil (Ry ,Rx) and its first principal gen-

eralized eigenvector simultaneously. We can apply Algorithm 1 to

adaptive estimation of the first principal generalized eigenvector by

replacing Ry and Rx in Algorithm 1 with their estimates Ry(k) and

Rx(k). In such a case, their inversion matrices Qy(k) := R−1

y (k)
and Qx(k) := R−1

x (k) can be obtained recursively with low com-

putational complexity by the matrix inversion lemma [17] as

Qy(k+1) =
1

β

[
Qy(k)− Qy(k)y(k + 1)(y(k + 1))HQy(k)

β + (y(k + 1))HQy(k)y(k + 1)

]
,

(3)

Qx(k+1) =
1

α

[
Qx(k)− Qx(k)x(k + 1)(x(k + 1))HQx(k)

α+ (x(k + 1))HQx(k)x(k + 1)

]
,

(4)

where α, β ∈ (0, 1). In adaptive estimation, since the matrix pencil

is time-varying, step size η must be chosen adaptively. From (2),

for choosing appropriate adaptive step size, the condition number

κ(R(k)) is required, where R(k) := Qx(k)Ry(k). In [14], a best

upper bound of κ(R(k)) [15] is used, and its additional calculation

cost is 5N2 +O(N) at every k [14].

Fact 1 (Best upper bound in [15]) For a positive definite matrix A

with eigenvalues λ1 ≥ · · · ≥ λN > 0 (not necessarily Hermitian

matrix), κ(A) := λ1/λN satisfies

κ(A) ≤ 1 +
√

1− (N/tr(A))Ndet(A)

1−
√

1− (N/tr(A))Ndet(A)
=: κ̂1(A), (5)

Moreover, κ̂1(A) is the best upper bound of κ(A) in terms of

tr(A),det(A),N only, i.e., for any positive definite matrix X ,

κ̂1(A) = sup
X∈CN×N

{κ(X) | tr(X) = tr(A),det(X) = det(A)}.
(6)

Eq. (6) implies that for any other upper bound κ̂′
1(A) in terms of

tr(A) , det(A) and N only, κ̂1(A) ≤ κ̂′
1(A).

2.3. Rapid increasing of existing upper bound

The upper bound (5) increases exponentially w.r.t N , which is con-

firmed easily from

κ̂1(A) = 2cN
(
1 +

√
1− c−N

)
− 1, (7)

where

c =
tr(A)/N

det(A)1/N
=

(∑N
i=1

λi

)
/N

(∏N
i=1

λi

)1/N ≥ 1. (8)

The inequality (8) is derived from arithmetic-geometric-mean in-

equality. This fact indicates that the range (0, 2/(κ̂1(R(k)) − 1))
from which we select adaptive step size shrinks rapidly, and we can-

not select adaptive step size large enough for estimation (see blue

Algorithm 1 Normalized quasi-Newton algorithm [14]

With Rx-normalized vector w(0) ∈ C
N and λ(0) > 0, generate

the sequence (w(k), λ(k)) ∈ (CN \ {0}) × R (k = 0, 1, . . . ) by

ŵ(k + 1) := w(k) +
η

λ(k)

(
R

−1

x Ryw(k)

+ (w(k))HRyw(k)w(k)
)

w(k + 1) := ŵ(k + 1)/‖ŵ(k + 1)‖Rx

λ(k + 1) := (1− γ)λ(k) + γ(w(k + 1))HRyw(k + 1)

with step sizes η > 0 and γ ∈ (0, 1], where (w(k), λ(k)) are the es-

timates of the first principal generalized eigenvector and eigenvalue.

line in Fig. 1(b)(c) in Sect. 4). Consequently, the update of estimate

vanishes, and hence the estimate becomes unchanged (see blue lines

in Fig. 2(b)(c) in Sect. 4).

3. APPLICABLE BOUNDS FOR ADAPTIVE STEP SIZES

We propose to employ tighter upper bounds using partial information

of inverse matrix R−1(k). This is because the largest eigenvalue of

R−1 is 1/λN , which implies that tr(R−1) and ‖R−1‖F are domi-

nated by 1/λN and they give nice estimates of 1/λN . Moreover, the

estimates R(k) and R−1(k) can be obtained efficiently withO(N2)
in the adaptive generalized eigenvector extraction.

3.1. Bounds in terms of Frobenius norms and traces

We propose to use two upper bounds in terms of Frobenius norms

and traces of R(k) and R−1(k) for selecting adaptive step size.

As the first upper bound, we employ an upper bound in [18]

Fact 2 (Upper bound introduced in [18]) For a positive definite

matrix A with eigenvalues λ1 ≥ · · · ≥ λN > 0 (not necessarily

Hermitian matrix), κ(A) := λ1/λN ,

κ(A) ≤
√[

t
N

+

√
N−1

N

(
f
2 − t2

N

)] [
t
N

+

√
N−1

N

(
f2 − t2

N

)]

=: κ̂ft(A), where

t := tr(A), t := tr(A−1), f := ‖A‖F , f := ‖A−1‖F . (9)

This bound κ̂ft(A) coincides with the true condition number if N =
2 or κ(A) = 1 for N ≥ 3. As the second upper bound, we derive a

best upper bound in terms of Frobenius norms and N only.

Theorem 1 For a positive definite matrix A with eigenvalues

λ1 ≥ · · · ≥ λN > 0 (not necessarily Hermitian matrix),

κ(A) := λ1/λN satisfies

κ(A) ≤

√√√√√
ff −N + 2 +

√
(ff −N + 2)2 − 4

ff −N + 2−
√

(ff −N + 2)2 − 4
=: κ̂f (A),

(10)

where

f := ‖A‖F , f := ‖A−1‖F .
Moreover, κ̂f (A) is the best upper bound of κ(A) in terms of

f, f ,N only, i.e., for any positive definite matrix X ,

κ̂f (A) = sup
X∈CN×N

{κ(X) | ‖X‖F = f, ‖X−1‖ = f}.

Equality holds in (10) if and only if

λ1 =

√
f

2f

(
ff −N + 2 +

√
(ff −N + 2)2 − 4

)
,
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λN =

√
f

2f

(
ff −N + 2−

√
(ff −N + 2)2 − 4

)
,

and

λi = f/f (i = 2, . . . , N − 1).

The word ”best” in Theorem 1 is the same meaning of that in Fact 1.

The proposed bound κ̂f (A) equals to the true condition number

even when κ̂ft(A) does not, for N ≥ 3. To take advantages of

the above two bounds, we propose to use

κ̂2(R(k)) = min(κ̂ft(R(k)), κ̂f (R(k))) (11)

for selecting adaptive step size from (0, 2/(κ̂2(R(k))− 1)).
In the worst case, κ̂2(A) increases linear w.r.t. N . This fact is

confirmed as

κ̂2(A) ≤ κ̂f (A)

=
ff −N + 2 +

√
(ff −N + 2)2 − 4

2
< ff −N + 2 ≤ N (κ(A)− 1) + 2.

The last inequality is derived from

ff = ‖A‖F ‖A−1‖F =

√√√√
(

N∑

i=1

λ2

i

)(
N∑

i=1

1

λ2

i

)
≤ Nκ(A).

We evaluate the calculation cost of κ̂2(R(k)) accurately. For cal-

culation of the upper bound, κ̂2(R(k)), ‖R(k)‖F and ‖R−1(k)‖F
are required. We evaluate the additional multiplications for obtain-

ing the Frobenius norms. From (1) and (4), the matrix R(k+1) can

be recursively calculated from R(k) as

R(k + 1) = Qx(k + 1)Ry(k + 1)

=
β

α
R(k)− βlx(k + 1)(lx(k + 1))HRy(k)

α(α+ (x(k + 1))H lx(k + 1))

+
1

α
ly(k + 1)(y(k + 1))H

− ((x(k + 1))H ly(k + 1))lx(k + 1)(y(k + 1))H

α(α+ (x(k + 1))H lx(k + 1))
,

(12)

where lx(k+1) = Qx(k)x(k+1) and ly(k+1) = Qx(k)y(k+1).
For obtaining R(k), we have to calculate ly(k + 1) and (12)

(lx(k+1) is already calculated in (4)). Therefore, to calculate R(k)
costs 6N2 +O(N) and we can obtain ‖R(k)‖F with 7N2+O(N)
multiplications. In the same way ‖R−1(k)‖F also requires ad-

ditional 7N2 + O(N) multiplications. Finally, since we need to

additionally calculate Qy(k) (it costs 3N2 + O(N) from (3)) for

R−1(k) (Ry(k), Rx(k) and Qx(k) are already calculated in Al-

gorithm 1 at every k), the total additional multiplications to com-

bine κ̂2(R(k)) with Algorithm 1 are 17N2+O(N) ( tr(R(k)) and

tr(R−1(k)) can be calculated with no additional multiplications).

This additional calculation cost is a slight large compared with that

of adaptive step size used in [14].

3.2. Proposed best upper bound with use of traces

We also propose to use another best possible upper bound for

κ(R(k)) with use of tr(R(k)), tr(R−1(k)) and N only. This

bound does not increase exponentially w.r.t. N . Moreover, this

bound can be calculated with almost the same multiplications of the

existing adaptive step size, i.e., 5N2 +O(N), in a scenario of adap-

tive estimation.

Table 1. Additional multiplications for upper bounds
additional multiplications

κ̂1(R(k)) (Existing [15]) 5N2 +O(N) [14]

κ̂2(R(k)) (Proposed bound 1) 17N2 +O(N)
κ̂3(R(k)) (Proposed bound 2) 5N2 +O(N)

Theorem 2 For a positive definite matrix A with eigenvalues

λ1 ≥ · · · ≥ λN > 0 (not necessarily Hermitian matrix),

κ(A) := λ1/λN satisfies

κ(A) ≤
√

tt−N + 2 +

√
(
√

tt−N + 2)2 − 4
√

tt−N + 2−
√

(
√

tt−N + 2)2 − 4

=: κ̂3(A),

(13)

where

t := tr(A), t := tr(A−1).

Moreover, κ̂3(A) is the best upper bound of κ(A) in terms of t, t
and N only, i.e., for any positive definite matrix X ,

κ̂3(A) = sup
X∈CN×N

{κ(X) | tr(X) = t, tr(X−1) = t}.

Equality holds in (13) if and only if

λ1 =

√
t

2
√
t

(√
tt−N + 2 +

√
(

√
tt−N + 2)2 − 4

)
,

λN =

√
t

2
√
t

(√
tt−N + 2−

√
(

√
tt−N + 2)2 − 4

)
,

and

λi =
√

t/t (i = 2, . . . , N − 1).

The word ”best” in Theorem 2 is the same meaning of that in

Fact 1. We propose to select adaptive step size from the range

(0, 2/(κ̂3(R(k))− 1)).
In the worst case, the upper bound κ̂3(R(k)) increases in propor-

tion to N2 by similar discussion in Sect 3.1. The increasing speed of

this bound is much slower compared with the existing bound [15],

and hence this bound is applicable for selecting adaptive step size.

We evaluate additional multiplications for tr(R(k)) and

tr(R−1(k)). For proposed bound we additionally need to calcu-

late Qy(k) for tr(R−1(k)) (Qx(k) is already calculated in Algo-

rithm 1 at every time index k). From (4), additional 3N2 + O(N)
multiplications are needed to obtain Qy(k). Next, we evaluate addi-

tional multiplications for tr(R(k)). It is sufficient to calculate only

diagonal components of R(k) for obtaining tr(R(k)). The (i, i)
(1 ≤ i ≤ N) component of R(k) equals to the inner product of ith
row vector of Qx(k) and ith column vector of Ry(k). Since inner

product needs N multiplications, we can obtain the sum of diagonal

components of R(k), i.e., tr(R(k)) with N2 multiplications. In the

same way, tr(R−1(k)) can be obtained with additional N2 multipli-

cations. Then, we can calculate adaptive step size with 5N2+O(N)
additional multiplications, which is almost the same calculation cost

of the existing adaptive step size. Finally, we summarize the addi-

tional calculation costs of upper bounds for adaptive step sizes in

Table 1.

4. NUMERICAL EXPERIMENT

We evaluate proposed adaptive step size selections in a sce-

nario of subspace tracking. We track the principal generalized

eigensubspace span{vi}2i=1 of (Ry,Rx) from input sequences
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Fig. 1. The averages of adaptive step sizes η̄s(k) (s = 1, 2, 3) over L = 100 runs
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Fig. 2. The averages of Direction Cosine DC over L = 100 runs

(y(k))k≥0, (x(k))k≥0 by combining Adaptive normalized quasi-

Newton algorithm (Algorithm 1) and Nested orthogonal com-

plement structure [16]. We compare three adaptive step sizes

ηs(k) :=(2 − ǫ)/(κ̂s(R(k)) − 1) (s = 1, 2, 3), where ǫ is a small

positive value. As comparison criteria, we observe the similarity

between two subspaces span{vi}2i=1 and span{wi,j(k), }2i=1 (the

estimate of span{vi}2i=1 at time k in the jth independent run) in

terms of Direction Cosine of the angle between subspaces

DCj(k) := cos
(
angle(span{vi}2i=1, span{wi,j(k)}2i=1)

)
.

Define the averages of DCj(k) in L independent runs as DC(k) :=
1

L

∑L
j=1

DCj(k) . We also observe the averages of adaptive step

sizes η̄s(k) = 1

L

∑L
j=1

ηs,j(k), where ηs,j(k) is ηs(k) at jth inde-

pendent run (s = 1, 2, 3).

The input samples are generated respectively as

y(k) =
√
2 sin(0.62πk + θ1) + n1(k),

and

x(k) =
√
2 sin(0.46πk + θ2) +

√
2 sin(0.74πk + θ3) + n2(k),

where the initial phase θi (i = 1, 2, 3) has the uniform distribution

in [0, 2π], n1(k) and n2(k) are white Gaussian noise with variance

σ2 = 0.1. The input vectors y(k) ∈ C
N and x(k) ∈ C

N ( N =
4, 8, 20 ) are defined as y(k) := (y(k), y(k−1), . . . , y(k−N+1))T

and x(k) := (x(k), x(k − 1), . . . , x(k − N + 1))T (k ≥ N ).
1 The matrix pencil is estimated by (1) with the parameters α =

1The covariance matrices Ry ,Rx ∈ CN×N are given as
{

(Ry)i,j := cos (0.62π(j − i)) + δi,jσ
2 ,

(Rx)i,j := cos (0.46π(j − i)) + cos (0.74π(j − i)) + δi,jσ
2.

β = 0.998, and the initial values Ry(0) = Rx(0) = IN . The

parameters for generalized eigenvalue estimation and adaptive step

size is respectively set as γ = 0.998 and ǫ = 10−15.

Fig. 1 and Fig. 2 respectively show the averages of adaptive step

sizes {η̄s(k)}3s=1 and DC(k) for N = 4, 8, 20 over L = 100 runs.

Fig. 1(a) depicts the existing and the proposed adaptive step sizes

for the case N = 4. In this case, since adaptive step sizes are cho-

sen large enough, the estimates of generalized eigensubspaces with

adaptive step sizes {ηs(k)}3s=1 converge to the true eigensubspace

(Fig. 2(a)). For the case N = 8 and N = 20, the existing adaptive

step size is small (Fig. 1(b)(c) blue line) and fails to extract general-

ized eigensubspace (Fig. 2(b)(c) blue line) as mentioned in Sect. 2.3.

In contrast, the proposed adaptive step sizes are large enough (Fig. 1

(b)(c) green and red lines), and estimates with the proposed adaptive

step sizes converge (Fig. 2(b)(c), green and red lines). From these

figures, we observe that proposed adaptive step sizes accelerate the

convergence speed of Adaptive normalized quasi-Newton algorithm.

5. CONCLUSIONS

We found that the existing step size works only when N is small

by analysing the behavior of the existing best upper bound of the

condition number w.r.t. N . Attention to the fact that we can obtain

the inverse matrix with O(N2) in a scenario of subspace tracking,

we proposed to utilize tighter upper bounds for selecting applicable

adaptive step sizes and evaluated their introduction cost precisely.

Numerical experiments showed that the proposed adaptive step sizes

are large enough and accelerate the estimation of Adaptive normal-

ized quasi-Newton algorithm.

These matrices are used for evaluating the true principal generalized eigen-
subspace, i.e., span{vi}2i=1

.
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