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ABSTRACT

This paper investigates the problem of recovering an n-
dimensional BPSK signal x0 ∈ {−1, 1}n from m-dimensional
measurement vector y = Ax+z, where A and z are assumed
to be Gaussian with iid entries. We consider two variants of
decoders based on the regularized least squares followed by
hard-thresholding: the case where the convex relaxation is
from {−1, 1}n to Rn and the box constrained case where the
relaxation is to [−1, 1]n. For both cases, we derive an exact
expression of the bit error probability when n and m grow
simultaneously large at a fixed ratio. For the box constrained
case, we show that there exists a critical value of the SNR,
above which the optimal regularizer is zero. On the other side,
the regularization can further improve the performance of the
box relaxation at low to moderate SNR regimes. We also prove
that the optimal regularizer in the bit error rate sense for the
unboxed case is nothing but the MMSE detector.

Index Terms— BER analysis, box relaxation, regularized
least squares, MMSE, high dimensions

1. INTRODUCTION

Estimating the linear least squares fit to data is a well-known
problem in many applications throughout science and engi-
neering. Of great interest is the setting where the variables
are constrained to be in a discrete set. This integer least
squares problem has many diverse applications such as de-
coding in multi-input-multi-output (MIMO) systems, high
precision GNSS positioning [1] and many lattice problems in
computer science [2]. In contrast to the continuous linear least
squares problem where a closed form solution can be found,
this problem is known to be NP-hard. In MIMO detection,
Maximum of Likelihood boils down to an integer least squares
problem. Many low-complexity detection algorithms are thus
proposed such as zero forcing, MMSE, and decision feedback.

Of interest in this paper is BPSK recovery, i.e. recovering
a sign vector in the set {−1, 1}n corrupted by noise. The
detection procedure is based on the regularized least squares
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(RLS) estimation followed by hard-thresholding. The RLS
is a LASSO-type algorithm, where an `2 norm regularization
is used to control the variance of the estimates and to avoid
ill-conditioning issues. This regularization is known as ridge
regression in statistics and machine learning contexts. The
MMSE decoder is a special case of the RLS decoder when the
regularizer λ is set to 1

SNR .
Another popular heuristic that enhances the performance

of the detector is the box relaxation [3–5], i.e. solving the
RLS problem when constraining the variables to be in [−1, 1]n

instead of {−1, 1}n.
The error probability of RLS, particularly the MMSE, can
be found using standard results from random matrix theory
and the asymptotic normality assumption of the SINR [6].
However, very little is known about the performance of the RLS
with box relaxation. We use the Convex Gaussian Min-max
Theorem (CGMT) to derive exact expressions of the bit-wise
error probability for both decoders and answer questions about
the optimal regularizer.
Setup. We consider the problem of recovering an n-dimensional
BPSK signal x0 ∈ {−1, 1}n from a noisy received measure-
ment vector y = Ax0+z, where A is the MIMO channel
matrix assumed to be known with iid entries N (0, 1

n ), and z is
the thermal noise vector N (0, σ2). The normalization in the
entries of A is made such that the SNR does not scale with n,
i.e. SNR = 1

σ2 .
Regularized Least Squares with Box Relaxation Optimiza-
tion (RLS-BRO). This heuristic detection scheme involves two
steps. The first one consists in solving the relaxed optimization
problem, by assuming that x is in [−1, 1]n instead of {−1, 1}n,
and thus yielding a convex problem. Then, the output x̂ of the
first step is hard-thresholded by a sign function to produce a
sign vector x∗ that estimates x0. Formally, denoting by ‖.‖ the
`2 norm, the two steps are as follows:

x̂ = argmin
−1≤xi≤1

‖Ax−y‖2+λ‖x‖2 (1a)

x∗ = sign(x̂) (1b)

We also consider the ordinary convex relaxation in Rn. We
denote this scheme simply by RLS. We want to answer herein
the following question: when the regularizer is optimally tuned
to minimize the error probability, does this coincide with the
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MMSE decoder?
Bit error probability We evaluate the performance of the
detection algorithm using the bit error probability Pe defined as
the expectation of the bit error rate (BER).

BER :=
1

n

n∑
i=1

1{x∗i 6=x0,i} (2a)

Pe := E[BER] =
1

n

n∑
i=1

Pr(x∗i 6= x0,i) (2b)

The rest of this paper is organized as follows. In the second
section, we present and discuss the results regarding the proba-
bilities of error and the optimal regularizers. In the third section,
we recall the Convex Gaussian Min-max Theorem (CGMT),
and we give a proof outline that leads to the results in Theorem
1 and 3.

2. MAIN RESULTS

We analyze the asymptotic error probability for both RLS and
RLS-BRO, denoted respectively by Pe and PBRO

e , when the
BPSK signal is unknown. The analysis is performed when the
system dimensions m and n grow simultaneously large at a
fixed ratio δ := limn→∞

m
n ∈ (0,∞). The SNR is assumed to

be constant. Let Q(.) denote the Q-function associated with the
standard normal density p(h) = 1√

2π
e−h

2/2.

Theorem 1. (Pe of RLS). Let λ ≥ 0 and δ > 0. Then,

lim
n→∞

Pe = Q

(√√√√√ δ− 1
(1+Υ(λ,δ))2(

Υ(λ,δ)
1+Υ(λ,δ)

)2

+ 1
SNR

)
(3)

where Υ(λ, δ) =
1−δ+λ+

√
(1−δ+λ)2+4λδ

2δ
.

This theorem provides a closed form expression of the
bit-wise error probability of the RLS at high dimensions. It
namely can serve to compute the asymptotic BER of the MMSE
detector simply by setting λ to 1

SNR . Such closed form result
is appealing because of the fundamental importance of the
MMSE decoder. We focus now on tuning the regularizer λ that
minimizes this error probability. This is the objective of the
next proposition.

Proposition 2. (Optimal regularizer of RLS) Let λ∗ denote
the optimal regularizer that minimizes the limit in (3). Then,
λ∗ = 1

SNR .

This proposition establishes that the RLS with optimal
regularizer set to λ∗ to minimize the error probability is nothing
but the MMSE detector. The latter is well known (by definition)

to minimize the MSE, but it turns out according to proposition
2 that it also minimizes the BER among all other choices of λ.
In the case of the RLS, x̂ has a closed form solution, that is
x̂ = (ATA+λI)−1ATy. Potentially, one could then show
Theorem 1 relying on results in asymptotic random matrix
theory. Instead, we prove this using the CGMT framework,
which yields the result in a more natural way. Importantly, the
CGMT approach can be used to analyze more complicated
detectors where no closed form solution is available. One such
example is the RLS-BRO (1) in next theorem.

Theorem 3. (PBRO
e of RLS-BRO). Let λ, δ ∈ (0,∞). Then,

lim
n→∞

PBRO
e = Q(

1

τ∗
),

where τ∗ is the unique solution to the following

min
τ>0

max
β>0

D(τ, β) := βδτ+
β

τSNR
− β

2λ

2
+

4β

τ
Q

(
2

τ
+

2

β

)
−4βp

(
2

τ
+

2

β

)
− β2

β
τ +2

∫ 2
β

− 2
β−

2
τ

(
h− 2

β

)2

p(h)dh (4)

The objective function in (4) is strictly convex-concave.
Hence, the unique stationary point (τ∗, β∗) can be computed
numerically by writing the first order optimality conditions.
Apart from predicting the error probability of the system, one
major importance of this result lies in the fact that it allows an
optimal setting of the regularizer. It is clear that the asymptotic
probability of error is minimized when τ∗ is minimized with
respect to λ. Although the analytical expression of the optimal
regularizer seems to be out of reach, it is possible to show that
it is exactly zero at high SNR. This result is stated formally in
the following proposition:

Proposition 4. (Optimal regularizer of RLS-BRO at high SNR)
Let λBRO

∗ := argminλ≥0 τ∗. Then, ∃SNR ∈ R+, such that,
λBRO
∗ = 0 for all SNR ∈ (SNR,∞).

This result can be proven by assuming that λ is small
enough so that τ∗ → 0 as SNR→∞.
Numerical results. Figure 1 illustrates the accuracy of the
results in theorems 1 and 3. An analytic comparison of the
MMSE performance to that of the RLS-BRO, shows significant
improvement on the BER performance by imposing the addi-
tional box constraint.
In Figure 2, we plot the optimal regularizer predicted by The-
orem 3, for different values of δ using a bisection algorithm.
The first deduced ascertainment is that the optimal regularizer
stagnates at zero starting from moderate values of the SNR. It
is also always below 1

SNR . We can also notice that the optimal
value of the regularizer is a decreasing function of δ

Theorem 1 and 3 predict the bit error probability at high
dimensions. The two considered schemes belong to the LASSO-
type class. Whilst the asymptotic square-error has been recently
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studied precisely for a wide range of such algorithms [7–11],
the error probability has been limited so far only for the ordinary
least squares with BRO [12]. It is worth mentioning that the
bit-wise error probability is a more appropriate performance
metric for the considered schemes because the square-error
assesses the performance of the first step (1a) only, but not the
overall scheme performance. The analysis of the MSE builds
upon the Convex Gaussian Min-max Theorem (CGMT). The
application of this theorem can go beyond the MSE to precisely
characterize the BER. Details of the derivations are in the next
section.
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Fig. 1. Error probability of the MMSE and RLS-BRO with optimal regular-
izer. Pe as a function of SNR in dB for δ = 0.7 and δ = 1. The theoretical
predictions follow Theorem 1 and 3. For the Monte-Carlo simulations, we use
n = 512. for each iteration and each SNR value, we generate 32 independent
realizations of the channel matrix and the noise vector.
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Fig. 2. Optimal regularizer λBRO
∗ as a function of the SNR. Different values

of δ are considered.

3. PROOF OUTLINE

In this section, we prove Theorem 3. Theorem 1 can be proven
in a similar fashion, and the result involves solving a min-
max problem as well, but that can be solved in closed form

expression. For convenience, we consider the error vector
w = x−x0. Define also B := [−2, 0]n.
Then, the problem in (1a) can be reformulated in terms of w.

ŵ := argmin
w∈B

‖z−Aw‖2+λ‖w+x0‖2 (5)

Without loss of generality, we assume for the analysis that
x0 = 1n = (1, 1, · · · , 1). Henceforth, the BER can be ex-
pressed as: BER = 1

n

∑k
i=1 1{x̂i<0}.

CGMT. The key ingredient of the proof is the Convex Gaus-
sian Min-max Theorem [10]. It associates with the Primary
Optimization (PO) problem we are interested in an Auxiliary
Optimization (AO) problem, from which we can tightly char-
acterize the (PO). The behavior of the (AO) problem is often
easier to analyze because it does not involve large random ma-
trices but only random vectors, contrary to the PO that depends
on the random measurement matrix A.
In the following, we recall the statement of the CGMT, and
we refer the reader to corollary 6.1 in [11], for the complete
technical requirements of this theorem. Consider the following
two min-max problems:

Φ(G) := min
w∈Sw

max
u∈Su

uTGw+ψ(w,u), (6a)

φ(g,h) := min
w∈Sw

max
u∈Su

‖w‖gTu−‖u‖hTw+ψ(w,u),

(6b)

where G ∈ Rm×n, g ∈ Rm, h ∈ Rn, Sw ⊂ Rn, Su ⊂ Rm
and ψ : Rn×Rm 7→ R. Denote by wΦ := wφ(G) and
wφ := wφ(g,h) any optimal minimizers in (6a) and (6b)
respectively.
In (6), let Sw and Su be convex and compact sets, ψ be
continuous and convex-concave on Sw×Su, and , G, g and
h all have iid standard normal entries. Let S be any arbitrary
open subset of Sw. Then, if limn→∞ Pr(wφ ∈ S) = 1, it also
holds limn→∞ Pr(wΦ ∈ S) = 1.

Identifying the (PO) and the (AO) The first step of the
analysis is transforming the optimization problem (5) in the
form of a (PO). To do, we shall first rewrite (5) by expressing
the squared norm loss function in its dual form through the
Fenchel conjugate, ‖z−Aw‖2 = maxu

√
nuT (z−Aw)−

n
4 ‖u‖

2:

min
w∈B

max
u

√
nuTAw−

√
nuT z−n

4
‖u‖2+λ‖x0+w‖2. (7)

The dual variable u is scaled by a factor
√
n for an issue of

convergence. Strictly speaking, the terms in the objective
function should be all of the same order Op(n). The above
form in (7) satisfies the (PO) formulation of the CGMT. Hence,
we can define the corresponding (AO) as:

min
w∈B

max
u
‖w‖gTu−‖u‖hTw−

√
nuT z

−n
4
‖u‖2+λ‖x0+w‖2. (8)
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Computing the BER via the (AO). For any fixed ε > 0,

define the set S =
{
v :
∣∣∣ 1
n

∑n
i=1 1{vi≤−1}−Q(1/τ∗)

∣∣∣ < ε
}

,
where τ∗ is defined in theorem 3. Denote by w̃ the optimal
solution of the (AO) problem. We will prove that w̃ ∈ S with
probability 1. Then, applying the CGMT to the set S suffices
to conclude that ŵ ∈ S with probability 1, which establishes
the expression of the asymptotic PBRO

e .
Simplifying the AO Since vectors g and z are independent,
‖w‖gTu−

√
nuT z

d
=
√
‖w‖2+nσ2gTu, that is, (8) is

equivalent to

min
w∈B

max
u

√
‖w‖2+nσ2gTu−‖u‖hTw−n

4
‖u‖2

+λ‖x0+w‖2 (9)

Fixing the magnitude of u to β := ‖u‖, we can optimize over
its direction by aligning it with g. Then, the (AO) simplifies to
the following:

max
β≥0

min
w∈B

√
nβ(

√
‖w‖2
n

+σ2‖g‖−hTw√
n

)−nβ
2

4
+λ‖x0+w‖2

(10)

To have a separable optimization problem, we use the identity
√
χ = minτ>0

τ
2 + χ

2τ , where χ = ‖w‖2
n +σ2. This yields the

following form:

min
τ>0

max
β≥0

√
nβτ‖g‖

2
+

√
nβσ2‖g‖

2τ
−nβ

2

4
+nλ

+

n∑
i=1

min
−2≤wi≤0

(
β‖g‖
2τ
√
n

+λ)w2
i −(βhi−2λ)wi. (11)

Let τn and βn denote the optimal solutions to the above min-
max optimization problem. Then, if βn > 0, the optimal w̃i

satisfies

w̃i =


0 , if hi ≥ 2λ

βn
βnhi−2λ
β‖g‖
τn
√
n

+2λ
, if −2( ‖g‖

τn
√

n
+ λ
βn

) < hi <
2λ
βn

−2 , if hi ≤ −2( ‖g‖
τn
√

n
+ λ
βn

)

(12)

τn and βn are thus the solution to the following:

min
τ>0

max
β>0

√
nβ

2
(τ‖g‖+ σ2‖g‖

τ
)−nβ

2

4
+

n∑
i=1

v(τ, β) (13)

v(τ, β) =


0 , if hi ≥ 2λ

β

− (βhi−2λ)2

2β‖g‖
τ
√
n

+4λ
, if −2( ‖g‖

τ
√

n
+ λ
β ) < hi <

2λ
β

2β‖g‖
τ
√
n

+2βhi , if hi ≤ −2( ‖g‖
τ
√

n
+ λ
β )

Convergence of the (AO). After simplifying the (AO) as in
(13), we are now in position to analyse its limiting behaviour.
First, we need to properly normalize the (AO) by dividing the

objective function of the (AO) by n. Also, redefine τ := τ√
δ
.

Using the WLLN, ‖g‖√
n

P−→
√
δ and for all τ > 0 and β > 0,

1
nv(τ ;hi; ‖g‖)

P−→ Y (τ, β)

Y (τ, β) := − 1
2β
τ +4λ

∫ 2λ
β

− 2
τ−

2λ
β

(βh−2λ)2p(h)dh+ 2β
τ Q

(
2
τ + 2λ

β

)
−

2β
∫∞

2( 1
τ +λ

β )
hp(h)dh. Hence, The objective function in (τ, β)

in (13) converges to Y (τ, β)+ βδτ
2 + β

2τSNR−
β2

4 . Multiplying
the latter expression by 2

λ and redefining β := β
λ , we prove the

point-wise convergence to D(τ, β) in (4). Furthermore, it is
possible to show that for λ 6= 0, β∗ > 0 with probability one.

The functions τ 7→ maxβ>0

√
nβ
2 (τ‖g‖+ σ2‖g‖

τ )− nβ2

4 +∑n
i=1 v(τ, β) and τ 7→ maxβ>0D(τ, β) are convex. Hence,

we can show using theorem 2.7 in [13] that τn
P−→ τ∗. The

latter convergence is crucial for the final step of the proof.
Proving w̃ ∈ S Using the expression in (12),
1{w̃i≤−1} = 1{βhi−2λ≤−(

β‖g‖
τ
√
n

+2λ)} = 1{hi≤− ‖g‖
√
n
√
δτ
}

recall that ‖g‖/
√
n

P−→
√
δ and τn

P−→ τ∗. Putting all results
together, it can be shown that 1

n

∑n
i=1 1{w̃i≤−1}

P−→ Q( 1
τ∗

).
Unboxed RLS (Theorem 1) For the the unboxed problem, it
can be shown similarly that τ∗ is solution to the following:

min
τ>0

max
β>0

βδτ+
β

τSNR
− β

2

2
− β

2+4λ2

β
τ +2λ

(14)

The first order optimality conditions are :

δ− 1

τ2SNR
− β2+4λ2

(β+2λτ)2
= 0 (15a)

δτ+
1

τSNR
−β−τ β

2+4βλτ−4λ2

(β+2λτ)2
= 0. (15b)

The unique positive solution in τ of the above system is√
( Υ(λ,δ)

1+Υ(λ,δ) )
2
+ 1

SNR

δ− 1
(1+Υ(λ,δ))2

. Similarly to the Box Relaxation case,

we can show that BER := 1
n

∑n
i=1 1{w̃i≤−1}

P−→ Q( 1
τ∗

),
which proves Theorem 1 .

4. CONCLUSION

In this paper, we leveraged the CGMT framework to conduct a
precise analysis of the BER of the Regularized Least Squares
algorithm, with and without Box Relaxation (BRO). When
using the (BRO), we proved that there exists a critical value of
the SNR, above which the optimal regularizer is zero. We also
proved that the unboxed RLS with a regularizer tuned optimally
in the BER sense yields the MMSE detector. This analysis
might be extended to higher-order constellations, such as QAM
and PSK. But, this requires a generalization of the CGMT and
should be left to another occasion.
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