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Abstract—We study the sensor selection problem for field estimation,
where a best subset of sensors is activated to monitor a spatially
correlated random field. Different from most commonly used centralized
selection algorithms, we propose a decentralized architecture where sensor
selection can be carried out in a distributed way and by the sensors
themselves. A decentralized approach is essential since each sensor has
access only to the information (e.g., correlation) in its neighborhood. To
make distributed optimization possible, we decompose the global cost
function into local cost functions that require only the information in
local neighborhoods of sensors. We then employ the alternating direction
method of multipliers (ADMM) to solve the proposed sensor selection
problem. In our algorithm, each sensor solves small-scale optimization
problems, and communicates directly only with its immediate neighbors.
Numerical results are provided to show the effectiveness of our approach.

Keywords—Sensor selection, field estimation, distributed optimization,
sparsity, alternating direction method of multipliers.

I. INTRODUCTION

In this paper, we study the problem of distributed sensor selection
for field estimation, where a spatially correlated random field is
monitored by distributed sensors. In the task of field estimation,
an unknown field intensity, such as temperature [1] or precipitation
[2], is interpolated by sensor measurements. Due to limited sensor
battery power, it is desirable to select only a subset of sensors
for field monitoring such that a tradeoff can be achieved between
estimation accuracy and sensor activations [3]. However, the existing
works on sensor selection [4]–[12] mainly focus on the develop-
ment of centralized sensor selection algorithms, where the complete
knowledge about the system model is given in advance, and the
computation is performed at a central processing unit, namely, the
fusion center (FC). Different from the literature [4]–[12], we aim to
develop a decentralized architecture where sensor selection can be
carried out in a distributed way and by the sensors themselves. More
importantly, due to the assumption that every sensor only has access
to its neighbors’ information, i.e., partial (local) information instead
of complete (global) information, the need for a distributed algorithm
is well motivated.

The problem of distributed sensor selection has attracted signifi-
cant attention [13]–[16]. In [13], a distributed online greedy algorithm
was proposed to maximize the utility of the activated sensors by
assuming that the utility function is submodular (with diminishing
returns property). However, for most commonly used estimation
error metrics, the objective function used for sensor selection is
not submodular in general [17]. In [14], [15], a dual subgradient
method was employed to solve the distributed sensor selection
problem under a linear Gaussian measurement model. Those papers
considered distributed sensor selection for estimating deterministic
unknowns with no or weak noise correlation, whereas we consider
a more general problem. In [16], the distributed sensor selection
problem was studied for a network with two leader nodes. The
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use of leader nodes makes the sensor selection algorithm not fully
distributed. Different from [13]–[16], we propose a general framework
of distributed sensor selection for field estimation, where both the
sensor activation scheme, and the estimator gain matrix used to
combine sensor measurements, are jointly optimized. This is based
on the fact that a sensor being in the off state is represented by the
corresponding column of the estimator gain matrix being identically
zero.

Besides [13]–[16], our work is also related to, but different from,
the problem of consensus-based distributed estimation [18]–[26]. The
success of most approaches to distributed estimation is primarily due
to the decomposability of the global cost (e.g., sum-of-squares cost
in [22], [23]) into a sum of local cost functions accessed by sensors.
The main contribution of our paper is a new framework for designing
the optimal sensor selection scheme for reconstructing the spatially-
correlated random field, wherein the objective function used for sensor
selection is not separable. To circumvent this difficulty, we propose an
approximate decomposition of the global sensor selection cost into
local cost functions that require only the information in neighbor-
hoods of each of the sensors. We then employ alternating direction
method of multipliers (ADMM) [27] to solve the resulting distributed
optimization problem. Although subgradient-based algorithms [28]–
[30] are applicable for distributed optimization, ADMM has much
faster empirical convergence as demonstrated in many applications
[22], [27], [31]. Moreover, our novel ADMM algorithm allows us to
split the original complex problem into simple subproblems, each of
which can be solved analytically and in a distributed manner.

II. PROBLEM STATEMENT

We consider a generic system, where sensors are deployed to
monitor a spatially correlated random field. The task of field estima-
tion is to estimate (or interpolate) the unknown field intensity from the
measurements of the activated sensors, where the design of optimal
sensor activations is to be carried out in a distributed way and by the
sensors themselves.

A. Field estimation

We denote by φ(a) the field intensity at a 2D location a ∈ R2.
Without loss of generality, we assume that E[φ(a)] = 0 and
E[φ2(a)] = σ2

φ. The measurement model at the ith sensor is given
by yi = φ(si) + vi for i ∈ [m], where si is the location of sensor
i, vi is the i.i.d. measurement noise with E[vi] = 0 and E[v2i ] = σ2

v ,
and [m] denotes the integer set {1, 2, . . . ,m}. Here we assume that
vi is uncorrelated with φ(si). Upon defining the vectors of length M
φ := [φ(s1), φ(s2), . . . , φ(sm)]T and v := [v1, v2, . . . , vm]T , the
measurement model is written as

y = φ+ v. (1)

Let θ := [φ(u1), φ(u2), . . . , φ(un)]
T be the vector of field

intensities to be estimated at n unobserved locations {ui}ni=1. A
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linear estimator for θ is given by

θ̂ = Wy, (2)

where W ∈ Rn×m is the unknown estimator gain matrix determined
by the minimum mean squared error (MMSE) criterion. The estima-
tion distortion for the estimator (2) is given by

f(W) :=E[(θ̂ − θ)T (θ̂ − θ)] = tr(WQWT )− 2 tr(RW), (3)

where Q ∈ Rm×m and R ∈ Rm×n are defined as

Q := E[yyT ] = E[φφT ] + σ2
vI (4)

R := E[yθT ] = E[φθT ]. (5)

In (3), we have ignored a constant term E[φTφ] = nσ2
φ since it

does not affect the minimum of f(W). We will call f(W) a global
sensor selection cost, which relies on information about the entire
field correlation. Specifically, the matrix Q in (4) corresponds to the
spatial correlation of the field points at sensor locations {si}mi=1, and
the matrix R in (5) corresponds to the spatial correlation between the
observed field points at {si}mi=1 and the field points to be estimated
at {ui}ni=1.

B. Centralized sensor selection

The estimator (2) implies a one-to-one correspondence between
every sensor and a column of W. Suppose, for example, if only the
ith sensor reports a measurement, then it follows from (2) that Wy
reduces to wiyi, where wi is the ith column of W. Therefore, the
design of an optimal sensor selection scheme can be accomplished
by striking a balance between minimizing the estimation distortion
(3) and promoting the column-sparsity of W, namely,

minimize
W

f(W) + γ

m∑
i=1

‖wi‖2, (6)

where we have an implicit constraint wi = Wei with ei being
the basis vector with 1 at the ith coordinate and zeros elsewhere,
the `2 norm ‖wi‖2 is introduced to measure the column-sparsity
of W [32], and γ is a regularization parameter that governs the
relative importance of achieving a good estimation performance
versus activating a small number of sensors.

It has been shown in [31]–[33] that problem (6) can be solved
at the FC. However, in the absence of a FC or the full knowledge
about the spatial correlation, it is critical to compute the sensor
selection scheme in a distributed manner that is based on information
about correlation only in the local neighborhoods of each sensor.
Throughout the paper, the optimal solution of problem (6) will be
used as a benchmark to compare against the proposed distributed
sensor selection schemes.

C. Distributed sensor selection

A graph yields a succinct description of the local (one hop)
connectivity of the considered sensor network. Let G = (V, E) be an
undirected graph, where V is the set of m vertices (namely, sensors),
and E is the set of edges (namely, communication links among
sensors). We assume that G is connected, namely, there exists a path
that joins any pair of sensors in the network. Each sensor can com-
municate directly only with its immediate neighbors, where the 1-hop
neighborhood of sensor i is given by Ni = {j ∈ V | (i, j) ∈ E}∪{i}.

We assume that each sensor has access to local information about
correlation in its local neighborhood, namely, QNi,Ni ∈ R|Ni|×|Ni|

for i ∈ [m], where QNi,Ni is the submatrix of Q in (4) with rows

and columns indexed by Ni, and |Ni| is the cardinality of Ni. It is
known from [34] that QNi,Ni can be estimated by a local sample
covariance matrix. We also assume that each sensor has access to the
spatial correlation between itself and the field points to be estimated,
namely, ri ∈ Rn for i ∈ [m], where ri is the ith row vector of R
in (5). It has been suggested by [35] that ri can be learnt from local
data using a parametric correlation model (e.g., a power exponential
model).

Given {QNi,Ni}mi=1 and {ri}mi=1, we pose the optimization
problem for distributed sensor selection as follows

minimize
W

m∑
i=1

fi(W,QNi,Ni , ri) + γ

m∑
i=1

‖wi‖2, (7)

where fi denotes a local cost function available to sensor i. Compared
to problem (6), we may ask the following questions: What is the
appropriate choice of fi? Is it possible to decompose the global cost
function f into local cost functions {fi}? In the next section, we will
answer these questions in the affirmative.

III. LOCAL COST VERSUS GLOBAL COST

Given information about local correlation {QNi,Ni}mi=1, we note
that it is difficult to reconstruct the entire correlation matrix Q based
on such information. For example, consider a 1D field with m = 4
sensors in Fig. 1. It is clear that the correlation Q14 between sensor 1
and sensor 4 is not included in {QNi,Ni}4i=1. Therefore, there is an
information mismatch between {QNi,Ni}mi=1 and Q. Consequently,
recovering the global cost function f from local cost functions {fi}
is intractable in general. However, Proposition 1 shows that there exist
special cases in which f can be exactly decomposed into

∑m
i=1 fi.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

𝒩1 = {1,2}

𝒩2 = {1,2,3}

𝒩3 = {2,3,4}

𝒩4 = {3,4}

Fig. 1: 1D field with 4 sensors.

Proposition 1: Given {QNi,Ni}mi=1 and {ri}mi=1, if Qij = 0
when Ni ∩Nj = ∅, the global cost function (3) becomes{

f(W) =
∑m
i=1 fi(WNi)

fi(WNi) = tr[WNi(Ci ◦QNi,Ni)W
T
Ni

]− 2rTi wi,
(8)

where Qij is the (i, j)th entry of Q, WNi ∈ Rn×|Ni| is the
submatrix of W with columns indexed by Ni, Ci ∈ R|Ni|×|Ni|

is a given coefficient matrix, and ◦ is the entrywise product. Let
Ni = {j1, j2, . . . , j|Ni|}, the (p, q)th entry of Ci is given by

[Ci]p,q =

{
1
|Njp |

if p = q
1

|Njp∩Njq |
if p 6= q,

(9)

for p, q = 1, 2, . . . , |Ni|.

Proof: The proof is reported in Appendix A of [36]. �

Proposition 1 implies that it is possible to decompose the global
cost function into local cost functions when Q is sparse (specifically,
Qij = 0 if sensor i is at least a 3-hop neighbor of sensor j). Note that
a similar 3-hop condition has been shown in [34], where the maximum
likelihood estimate of the precision matrix (i.e., inverse of the
covariance matrix) could be computed in a distributed manner over the
graphical model that defines the precision matrix sparsity structure.
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Based on [34], the 1-hop and 2-hop neighbors of each sensor can be
interpreted as its protected and buffer nodes, respectively. If Q is not
sparse, the right hand side of (8) also provides a fine approximation
of the global cost function, since the spatial correlation of two field
points often decays fast as their distance increases [35].

Based on (8), problem (7) becomes

minimize
W

m∑
i=1

[tr(WNiSiW
T
Ni

)− 2rTi wi] + γ

m∑
i=1

‖wi‖2, (10)

where Si = Ci ◦QNi,Ni ∈ R|Ni|×|Ni|. Here the index set Ni may
overlap with each other, hence {N1, . . . ,Nm} is a cover rather than
a partition of [m]. In this sense, problem (10) can be regarded as
a general consensus problem [37], where the objective function is
a sum of local objective functions but with overlapping optimization
variables. Another key observation in (10) is that Si is not necessarily
a positive semidefinite matrix. The indefiniteness of Si makes it
challenging to solve problem (10) in a distributed manner.

IV. DECENTRALIZED OPTIMIZATION METHOD

We begin by reformulating problem (10) as

minimize
W,{Zi}

m∑
i=1

[tr(SiZi)− 2rTi wi] + γ

m∑
i=1

‖wi‖2

subject to Zi = WT
i Wi, i ∈ [m],

(11)

where Zi ∈ R|Ni|×|Ni| is an auxiliary optimization variable, and
the variable WNi ∈ Rn×|Ni| is replaced with Wi for notational
simplicity. Problem (11) contains a convex objective function but
introduces nonconvex equality constraints. It is known from [38] that
the nonconvex constraints of problem (11) can be relaxed to convex
positive semidefinite constraints Zi � WT

i Wi for i ∈ [m] (such a
convex relaxation is known as semidefinite relaxation), where X � Y
signifies that X−Y is positive semidefinite.

Problem (11) is relaxed to

minimize
W,{Zi}

m∑
i=1

[tr(SiZi)− 2rTi wi] + γ

m∑
i=1

‖wi‖2

subject to
[

Zi WT
i

Wi I

]
� 0, i ∈ [m],

(12)

where the linear matrix inequality is a reformulation of Zi �WT
i Wi

using the Schur complement. Problem (12) is not equivalent to
problem (11) in general. However, Proposition 2 shows that the matrix
Zi −WT

i Wi at the solution of problem (12) is of low rank. The
low-rank property together with our numerical results in Fig. 2 suggest
that the semidefinite relaxation performs well and could provide near-
optimal sensor selection schemes.

Proposition 2: Let {(Z∗i ,W∗
i )}mi=1 be the solution of problem

(12), we have rank
(
Z∗i − (W∗

i )
TW∗

i

)
< |Ni|.

Proof: The proof is reported in Appendix B of [36]. �

In what follows, ADMM is used as the decentralized message
sharing protocol. The core advantage of ADMM is that it allows us
to split problem (12) into subproblems, each of which can be solved
analytically based on only local data passage between neighboring
sensors. We refer interested readers to [27] for a survey on ADMM.

A. Distributed optimization via ADMM

We express problem (12) in a way that lends itself to the
application of ADMM [27], [37]

minimize
m∑
i=1

tr(SiZi) +

m∑
i=1

(γ‖wi‖2 − 2rTi wi) +

m∑
i=1

I+(Yi)

+ IC({Wi}) (13a)

subject to
[
Zi XT

i

Xi I

]
= Yi, i ∈ [m] (13b)

Xi = Wi, i ∈ [m] (13c)
Xieli = wi, i ∈ [m], (13d)

where {Zi}, {Wi}, {Xi}, {Yi} and {wi} are optimization vari-
ables. In (13a), IC({Wi}) is an indicator function of the convex
set described by consensus constraints C = {{Wi} | (Wi)k =
(Wj)k, i, j ∈ Nk} [37], where IC({Wi}) = 0 if {Wi} ∈ C and 0
otherwise, and (Wi)k denotes the kth column of W that appears in
Wi, e.g., (W3)3 = w3 if W1 = [w1,w3]. Moreover, the indicator
function I+(Yi) is used to characterize the positive semidefinite
constraint, where I+(Yi) = 0 if Yi � 0 and ∞ otherwise. In
(13d) , since i ∈ Ni, there exists a column index li of Xi (and
thus Wi) such that wi is the lith column of Wi, e.g., l3 = 2 if
W3 = [w1,w3].

Let X denote the set of variables {Xi} and {Zi}, and Y denote
the set of variables {Wi}, {Yi} and {wi}. Also let {Πi}, {Γi}, and
{µi} denote the dual variables (also known as Lagrangian multipliers)
associated with the linear constraints (13b) – (13d), respectively. The
dual variables are updated by

Πi(t+ 1) = Πi(t) + ρ

[
Zi(t+ 1) Xi(t+ 1)T

Xi(t+ 1) I

]
− ρYi(t+ 1)

(14)
Γi(t+ 1) = Γi(t) + ρXi(t+ 1)− ρWi(t+ 1) (15)
µi(t+ 1) = µi(t) + ρXi(t+ 1)eli − ρwi(t+ 1), (16)

for i ∈ [m], where t is the ADMM iteration, and ρ > 0 is
a regularization parameter. The most important step of ADMM is
to alternatively minimize the augmented Lagrangian [27, Sec. 3] of
problem (13) over X and Y at each iteration. The expression for
the augmented Lagrangian is omitted here for the sake of brevity.

By fixing values of variables in Y , we minimize the augmented
Lagrangian of problem (13) with respect to variables in X . This
leads to a sequence of quadratic programs

minimize
Xi,Zi

tr(SiZi) +
ρ
2
‖Xi −Gi(t)‖2F + ρ

2
‖Xieli − hi(t)‖22

+ ρ
2
‖Zi − F11

i (t)‖2F + ρ‖Xi − F21
i (t)‖2F ,

(17)

for i ∈ [m], where Gi(t) = Wi(t)− (1/ρ)Γi(t), hi(t) = wi(t)−

(1/ρ)µi(t),
[
F11
i (t) (F21

i (t))T

F21
i (t) F22

i (t)

]
= Yi(t)−(1/ρ)Πi(t), and ‖·‖F

is the Frobenius norm of a matrix. The solution of problem (17) is
explicitly given by{

Xi(t+ 1) := (3I + elieli)
−1
(
Gi(t) + hi(t)e

T
li
+ 2F21

i (t)
)

Zi(t+ 1) := F11
i (t)− (1/ρ)Si,

(18)

which can be computed at each sensor.

By fixing values of variables in X , we minimize the augmented
Lagrangian of problem (13) with respect to variables in Y . This leads
to a sequence of subproblems with respect to wi, Yi (∀i ∈ [m]) and
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{Wi}mi=1, respectively. That is,

minimize
wi

‖wi‖2 + 1/(2γ̂)‖wi − ĥi(t)− (2/ρ)ri‖22, i ∈ [m]

minimize
Yi

‖Yi − F̂i(t)‖2F , subject to Yi � 0, i ∈ [m] minimize
{Wi}

∑m
k=1

∑
i∈Nk

‖(Wi)k − (Ĝi(t))k‖22

subject to (Wi)k = (Wj)k, i, j ∈ Nk, k ∈ [m],

(19a)

(19b)

(19c)

where γ̂ = γ/ρ, ĥi(t) = Xi(t + 1)eli + (1/ρ)µi(t), F̂i(t) =[
Zi(t+ 1) Xi(t+ 1)T

Xi(t+ 1) I

]
+(1/ρ)Πi(t), and Ĝi(t) = Xi(t+1)+

(1/ρ)Γi(t).

The solution of problem (19a) is given by a block soft threshold-
ing operator [37, Sec. 6.5]

wi(t+ 1) := (1− γ̂/‖ĥi(t) + (2/ρ)ri‖2)+(ĥi(t) + (2/ρ)ri), (20)

where (x)+ = max{x, 0}.

The solution of problem (19b) is given by

Yi(t+ 1) =

n+|Ni|∑
j=1

(σj(t))+ ωj(t)ωj(t)
T , (21)

where
∑n+|Ni|
j=1 σj(t)ωj(t)ωj(t)

T is the eigenvalue decomposition
of F̂i(t).

Problem (19c) is separate over k and yields an average consensus

solution [39] (Wi(t+1))k =
∑

j∈Nk
(Ĝj(t))k

|Nk|
. Together with (15), we

obtain
∑
i∈Nk

(Γi(t+ 1))k = 0. Therefore, the solution of problem
(19c) becomes

[Wi(t+ 1)]k =
1

|Nk|
∑
j∈Nk

[Xj(t+ 1)]k, k ∈ [m], i ∈ Nk. (22)

The computation in (20) and (21) is easily performed in a distributed
manner since it is separable over sensors. By contrast, inter-sensor
communications are required in (22) to compute the average consen-
sus value within a sensor’s neighborhood.

B. Computational complexity and communication cost

ADMM has a linear convergence rate for general convex opti-
mization problems [40]. At each iteration of the proposed ADMM
described above, the computational complexity is dominated by
the eigenvalue decomposition in (21), which yields the complexity
O((|Ni|+n)3.5) for i ∈ [m]. Since it is often the case that n� m,
|Ni| � m and sensors can compute in parallel, the computational
complexity of the distributed algorithm is lower than that of the
centralized algorithm with complexity O((n + m)3.5). The total
number of in-network communications is given by

∑m
k=1 2(|Nk|−1),

where we require |Nk| − 1 hops to compute the average consensus
value in (22), and the other |Nk| − 1 communications to broadcast
this average in the neighborhood of each sensor.

V. NUMERICAL RESULTS

This section empirically shows the effectiveness of the proposed
distributed sensor selection approach. We consider a sensor network
with m = 100 sensors over a 10 × 10 square region. The spatial
placement of sensors is modeled by a random geometric graph [41].
We estimate the field intensities at n = 20 unobserved locations
randomly chosen from the square region. The spatial correlation of
the random field is given by cov(φ(a), φ(b)) = σ2

φe
−κ‖a−b‖22 , where

a,b ∈ R2 are locations of field points, σ2
φ = 1, and κ is a parameter

to govern the strength of spatial correlation, which increases (or
decreases) as κ decreases (or increases). In our numerical examples
unless specified otherwise, we set κ = 0.5 that corresponds to
a weak correlation. We obtain the sensor selection scheme under
two scenarios: a) the proposed ADMM-based approach to solve
problem (10); b) convex optimization to solve the centralized sensor
selection problem (6). In our numerical examples, ADMM converges
to satisfactory accuracy within 500 iterations, where we set ρ = 10
and choose random points drawn from a uniform distribution to
initialize ADMM. Given a sensor selection scheme, the estimation
performance is measured through the empirical mean squared error
(MSE) that is computed over 1000 numerical trials.

In Fig. 2, we compare the MSE of using the proposed distributed
sensor selection approach to that of using the centralized sensor
selection strategy. To be specific, in Fig. 2-(a), we present the MSE as
a function of the number of selected sensors by varying the sparsity-
promoting parameter γ in problems (6) and (10). Recall that the
column cardinality of the estimator gain matrix gives the number
of selected sensors. As we can see, the proposed distributed sensor
selection approach achieves almost the same estimation performance
as the centralized sensor selection method. As γ decreases, more
sensors are activated, and thus the estimation performance improves.
This renders the tradeoff between the conflicting objectives of good
estimation performance and minimal sensor usage.

In Fig. 2-(b), we present the difference of MSE (averaged over dif-
ferent numbers of selected sensors) between the distributed approach
being considered and the centralized selection method as a function of
the correlation parameter κ. As we can see, when κ becomes large
(corresponding to weak correlation), the performance gap tends to
be zero. Conversely, it increases as the correlation becomes strong
(namely, κ decreases). This is not surprising, since as indicated by
Proposition 1, the proposed distributed sensor selection problem (10)
is equivalent to the centralized sensor selection problem (6) when the
correlation is weak.

Random geometric graph

Correlation parameter, 𝜅
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Fig. 2: Performance evaluation of distributed sensor selection: a) MSE versus
number of selected sensors; b) Gap to MSE of using the centralized solution.

VI. CONCLUSIONS

In this paper, we proposed a decentralized architecture to design
optimal sensor selection schemes for field estimation. We provided
a reasonable way to decompose the global selection cost into local
cost functions that are amenable for distributed optimization. To solve
the resulting optimization problem, we used semidefinite relaxation
to circumvent the issue of nonconvexity, and employed ADMM for
distributed optimization. In future work, we would like to provide
a deeper investigation on the tightness of the used semidefinite
relaxation. We also would like to investigate the loss of performance
of the proposed myopic formulation of the sensor selection problem
relative to optimal multi-stage sensor selection schemes.

4260



REFERENCES

[1] M. C. Vuran, O. B. Akan, and I. F. Akyildiz, “Spatio-temporal
correlation: theory and applications for wireless sensor networks,”
Computer Networks, vol. 45, no. 3, pp. 245–259, June 2004.

[2] Phaeton C. Kyriakidis, “A spatial time series framework for modeling
daily precipitation at regional scales,” Journal of Hydrology, vol. 297,
no. 4, pp. 236 – 255, Apr. 2004.

[3] A. O. Hero and D. Cochran, “Sensor management: Past, present, and
future,” IEEE Sensors Journal, vol. 11, no. 12, pp. 3064–3075, Dec.
2011.

[4] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Transactions on Signal Processing, vol. 57, no. 2, pp. 451 –462, Feb.
2009.

[5] Y. Weng, L. Xie, and W. Xiao, “Sensor selection for random field
estimation in wireless sensor networks,” Journal of Systems Science
and Complexity, vol. 25, no. 1, pp. 46–59, 2012.

[6] S. Liu, A Vempaty, M. Fardad, E. Masazade, and P. K. Varshney,
“Energy-aware sensor selection in field reconstruction,” IEEE Signal
Processing Letters, vol. 21, no. 12, pp. 1476–1480, 2014.

[7] S. P. Chepuri and G. Leus, “Sparsity-promoting sensor selection
for non-linear measurement models,” IEEE Transactions on Signal
Processing, vol. 63, no. 3, pp. 684–698, Feb. 2015.

[8] S. P. Chepuri and G. Leus, “Sensor selection for estimation, filtering,
and detection,” in Proc. of International Conference on Signal Process-
ing and Communications (SPCOM), 2014, July 2014, pp. 1–5.

[9] V. Roy and G. Leus, “Correlation-aware sparsity-enforcing sensor place-
ment for spatio-temporal field estimation,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
April 2015, pp. 2389–2393.

[10] H. Zhang, J. Moura, and B. Krogh, “Dynamic field estimation
using wireless sensor networks: Tradeoffs between estimation error and
communication cost,” IEEE Transactions on Signal Processing, vol. 57,
no. 6, pp. 2383 –2395, June 2009.

[11] M. Calvo-Fullana, J. Matamoros, and C. Antón-Haro, “Sensor selection
in energy harvesting wireless sensor networks,” in Proc. IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Dec.
2015, pp. 43–47.

[12] S. P. Chepuri and G. Leus, “Sparse sensing for distributed detection,”
IEEE Transactions on Signal Processing, vol. 64, no. 6, pp. 1446–1460,
2015.

[13] D. Golovin, M. Faulkner, and A. Krause, “Online distributed sensor
selection,” in Proceedings of the 9th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN), 2010, pp.
220–231.

[14] H. Jamali-Rad, A Simonetto, and G. Leus, “Sparsity-aware sensor selec-
tion: Centralized and distributed algorithms,” IEEE Signal Processing
Letters, vol. 21, no. 2, pp. 217–220, Feb 2014.

[15] H. Jamali-Rad, A. Simonetto, X. Ma, and G. Leus, “Distributed
sparsity-aware sensor selection,” IEEE Transactions on Signal Pro-
cessing, vol. 63, no. 22, pp. 5951–5964, Nov 2015.
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