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ABSTRACT

This paper considers distributed multi-agents optimization
problems where agents collaborate to minimize the sum of
locally known convex functions. We focus on the case when
the communication between agents is described by a directed
graph. The proposed algorithm achieves the best known
rate of convergence for this class of problems, O(µk) for
0 < µ < 1, given that the objective functions are strongly-
convex, where k is the number of iterations. Moreover, it
provides a wider and more realistic range of step-size com-
pared with existing methods.

Index Terms— optimization, distributed algorithms, di-
rected graphs, sensor networks

1. INTRODUCTION

We consider the problem of minimizing a sum of objec-
tive,

∑n
i=1 fi(z), where fi : Rp → R is a private objective

known only to the ith agent in the network. This model
has various applications in the signal processing research in
the context of wireless communication, [1, 2], sensor net-
works, [3, 4], large-scale machine learning, [5, 6], etc. Most
of the existing algorithms, [7–12], assume information ex-
change over undirected networks where the communication
between agents is bidirectional. On the contrary, we consider
optimization over directed networks in this paper. Such cases
arises, e.g., when agents broadcast at different power levels.

We report the literature considering directed graphs here.
Broadly, the following three approaches refer to the tech-
niques of reaching average consensus over directed graphs
and extend the results to solve the distributed optimiza-
tion. Subgradient-Push (SP), [13–16], combines Distributed
Subgradient Descent (DSD), [17], and push-sum consen-
sus, [18, 19]. Directed-Distributed Subgradient Descent (D-
DSD), [20, 21], applies surplus consensus, [22], to DSD. The
algorithm in [23] is a combination of weight-balancing tech-
nique, [24], and DSD. These gradient-based methods, [13–
16, 20, 21, 23], converge at O( ln k√

k
). When the objective

functions are strongly-convex, the convergence rate can be
accelerated to O( ln k

k ), [25].
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Recently, we proposed DEXTRA, [26], which achieves a
linear convergence rate, O(µk) for 0 < µ < 1, given that
the objective functions are strongly-convex. However, a re-
striction of DEXTRA is the range of allowable step-sizes. In
particular, the greatest lower bound of DEXTRA’s step-size is
strictly greater than zero. In this paper, we propose an algo-
rithm to solve distributed optimization over directed graphs.
The proposed algorithm achieves a linear convergence rate
when the objective functions are strongly-convex. Compared
to DEXTRA, the proposed algorithm’s step-size, α, lies in
α ∈ (0, α). The rest of the paper is organized as follows.
Section 2 formulates the problem and describes the algorithm.
We provide the main result in Section 3. Section 4 shows sim-
ulations and Section 5 concludes the paper.

Notation: We use lowercase bold letters for vectors and
uppercase italic letters for matrices. The matrix, In, repre-
sents the n × n identity, and 1n is the n-dimensional vector
of all 1’s for any n. The spectral radius of a matrix, A, is
represented by ρ(A), and λ(A) denotes any eigenvalue of A.

2. ALGORITHM DEVELOPMENT

Consider a strongly-connected network of n agents commu-
nicating over a directed graph, G = (V, E), where V is the
set of agents, and E is the set of edges. We are interested in
the following optimization problem that is distributed over the
above directed multi-agent network:

P1 : min f(z) =

n∑
i=1

fi(z),

where each local objective function, fi : Rp → R, is convex
and differentiable, and known only by agent i.

To solve Problem P1, we describe the implementation of
the algorithm as follows. Each agent, j ∈ V , maintains three
vector variables: xk,j , zk,j , wk,j ∈ Rp, as well as a scalar
variable, yk,j ∈ R, where k is the discrete-time index. At kth
iteration, agent j weights its states, aijxk,j , aijyk,j , as well
as aijwk,j , and sends these to each of its out-neighbors, i ∈
N out
j , where the weights, aij’s are such that:

aij =

{
> 0, i ∈ N out

j ,
0, otw.,

n∑
i=1

aij = 1,∀j. (1)
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With agent i receiving the information from its in-neighbors,
j ∈ N in

i , it updates xk+1,i, yk+1,i, zk+1,i and wk+1,i as

xk+1,i =
∑
j∈N in

i

aijxk,j − αwk,i, (2a)

yk+1,i =
∑
j∈N in

i

aijyk,j , zk+1,i =
xk+1,i

yk+1,i
, (2b)

wk+1,i =
∑
j∈N in

i

aijwk,j +∇fi(zk+1,i)−∇fi(zk,i). (2c)

In the above,∇fi(zk,i) in the gradient of the function fi(z) at
z = zk,i, for all k ≥ 0. The step-size, α, is a positive number
within a certain interval. We will explicitly show the range
of α in Section 3. For any agent i, it is initiated with an ar-
bitrary vector, x0,i, and with w0,i = ∇fi(z0,i) and y0,i = 1.
We note that the implementation of Eq. (2) needs each agent
to at least have the knowledge of its out-neighbors degree.
See [13–16, 20, 21, 23, 26] for the similar assumptions.

To simplify the analysis, we assume from now on that
all sequences updated by Eq. (2) have only one dimension,
i.e., p = 1; thus xk,i, yk,i, wk,i, zk,i ∈ R,∀i, k. For xk,i,
wk,i, zk,i ∈ Rp being p-dimensional vectors, the proof is
the same for every dimension by applying the results to each
coordinate. Therefore, assuming p = 1 is without the loss
of generality. We next write Eq. (2) in a matrix form. De-
fine xk, yk, wk, zk, ∇fk ∈ Rn as xk = [xk,1, · · · , xk,n]>,
yk = [yk,1, · · · , yk,n]>, wk = [wk,1, · · · , wk,n]>, zk =
[zk,1, · · · , zk,n]>, and ∇fk = [∇f1(zk,1), · · · ,∇fn(zk,n)]>.
Let A = {aij} ∈ Rn×n be the collection of weights aij . It is
clear that A is a column-stochastic matrix. Define a diagonal
matrix, Yk ∈ Rn×n, for each k, as follows:

Yk = diag (yk) . (3)

Given that the graph, G, is strongly-connected and the cor-
responding weighting matrix, A, is non-negative, it follows
that Yk is invertible for any k. Then, we can write Eq. (2) in
the matrix form equivalently as follows:

xk+1 =Axk − αwk, yk+1 = Ayk, (4a)

zk+1 =Y −1k+1xk+1, wk+1 = Awk +∇fk+1 −∇fk, (4b)

where similarly we have the initial condition w0 = ∇f0.
Based on Eq. (4), we now give an intuitive interpretation

on the convergence of the algorithm to the optimal solution.
By combining Eqs. (4a) and (4b), we obtain that

xk+1 = 2Axk −A2xk−1 − α [∇fk −∇fk−1] . (5)

Assume that the sequences generated by Eq. (4) converge to
their limits (not necessarily true), denoted by x∞, y∞, w∞,
z∞,∇f∞, respectively. It follows from Eq. (5) that

x∞ = 2Ax∞ −A2x∞ − α [∇f∞ −∇f∞] , (6)

which implies that (In −A)2x∞ = 0n, or x∞ ∈ span{y∞},
considering that y∞ = Ay∞. Therefore, we obtain that

z∞ = Y −1∞ x∞ ∈ span{1n}, (7)

where the consensus is reached. By summing up Eq. (5) over
k from 0 to∞, we obtain that

x∞ = Ax∞ +

∞∑
r=1

(A− In)xr −
∞∑
r=0

(A2 −A)xr − α∇f∞.

Noting that x∞ = Ax∞ showed above, it follows

α∇f∞ =

∞∑
r=1

(A− In)xr −
∞∑
r=0

(A2 −A)xr.

Therefore, we obtain that

α1>n∇f∞ = 1>n (A− In)

∞∑
r=1

xr − 1>n (A2 −A)

∞∑
r=0

xr = 0,

which is the optimality condition of Problem P1. To conclude,
if we assume the sequences updated in Eq. (4) have limits,
x∞, y∞, w∞, z∞, ∇f∞, we have the fact that z∞ achieves
consensus and reaches the optimal solution of Problem P1.
This reveals the convergence of the algorithm.

3. ASSUMPTIONS AND MAIN RESULT

With appropriate assumptions, our main result states that the
proposed algorithm converges to the optimal solution of Prob-
lem P1 linearly. In this paper, we assume that the graph, G,
is strongly-connected; each local function, fi(z), is convex
and differentiable, and the optimal solution, f∗, of Problem
P1 and the corresponding optimal value, z∗, exists. Besides
the above assumptions, we formally present the following as-
sumptions.

Assumption A1. Each private function, fi, is differentiable
and strongly-convex, and the gradient is Lipschitz continuous,
i.e., for any i and z1, z2 ∈ R,

(a) there exists a positive constant l such that,

‖∇fi(z1)−∇fi(z2)‖ ≤ l‖z1 − z2‖;

(b) there exists a positive constant s such that,

s‖z1 − z2‖2 ≤ 〈∇fi(z1)−∇fi(z2), z1 − z2〉.

With these assumptions, we are able to present the conver-
gence result, the representation of which are based on the fol-
lowing notations. Based on earlier notations, xk, wk, and
∇fk, we further define xk = 1

n1n1
>
nxk, wk = 1

n1n1
>
nwk,

z∗ = z∗1n, gk = 1
n1n1

>
n∇fk, hk ∈ Rn = 1

n1n1
>
n∇f(xk),

where ∇f(xk) = [∇f1( 1
n1
>
nxk), ...,∇fn( 1

n1
>
nxk)]>. We
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denote some constants:τ = ‖A− In‖ , ε = ‖In −A∞‖ , η =
max (|1− αl| , |1− αs|), where A∞ = limk→∞Ak is the
limit of A. Let Y∞ be the limit of Yk in Eq. (3),

Y∞ = lim
k→∞

Yk, (8)

and y and y− be the maximum of ‖Yk‖ and ‖Y −1k ‖ over k,
respectively: y = maxk ‖Yk‖ , y− = maxk

∥∥Y −1k

∥∥ .
Moreover, we define two constants σ and γ1 in the follow-
ing two lemmas.

Lemma 1. (Nedic et al. [13]) Consider Yk, generated from
the column-stochastic matrix,A, and its limit Y∞. There exist
0 < γ1 < 1 and 0 < T <∞ such that for all k

‖Yk − Y∞‖ ≤ Tγk1 . (9)

Lemma 2. (Olshevsky et al. [27]) Consider Y∞ in Eq. (8),
and A the weighting matrix used in Eq. (4). For any a ∈ Rn,
define a = 1

n1n1
>
n a. There exists 0 < σ < 1 such that

‖Aa− Y∞a‖ ≤ σ ‖a− Y∞a‖ . (10)

We finally denote tk, sk ∈ R3, and G, Hk ∈ R3×3,∀k:

tk =

 ‖xk − Y∞xk‖
‖xk − z∗‖
‖wk − Y∞gk‖

 , sk =

 ‖xk‖0
0

 ,
G =

 σ 0 α
α(ly−) η 0

εlτy− + α(εl2yy2−) α(εl2yy−) σ + α(εly−)

 ,
Hk =

 0 0 0
αly−Tγ

k
1 0 0

(αly + 2)εly2−Tγ
k
1 0 0

 , (11)

We now state the key relation in this paper, the proof of
which appears in [28].

Theorem 1. The following inequality holds for all k ≥ 1,

tk ≤ Gtk−1 +Hk−1sk−1. (12)

Note that Eq. (12) provides a linear iterative relation be-
tween tk and tk−1 with matrix G and Hk. Thus, the conver-
gence of tk is fully determined by G and Hk. More specif-
ically, if we want to prove a linear convergence rate of ‖tk‖
to zero, it is sufficient to show that ρ(G) < 1 and the linear
decaying of ‖Hk‖. In Lemma 3, we first show that with ap-
propriate step-size, ρ(G) < 1. Following Lemma 3, we show
the linear convergence of ‖Gk‖ and ‖Hk‖ in Lemma 4.

Lemma 3. Consider the matrix, Gα, defined in Eq. (11) as a
function of the step-size, α. It follows that ρ(Gα) < 1 if the
step-size, α ∈ (0, α), where

α =

√
(ετs)2 + 4εy(l + s)s(1− σ)2 − ετs

2εlyy−(l + s)
. (13)

Proof. It is easy to verify that α ≤
√

4εy(l+s)s(1−σ)2
2εlyy−(l+s) < 1

l .
As a result, we have η = 1− αs. When α = 0, we have that

G0 =

 σ 0 0
0 1 0

εlτy− 0 σ

 , (14)

whose eigenvalues are σ and 1. Therefore, ρ(G0) = 1. We
now consider how the eigenvalue 1 is changed if we slightly
increase α from 0. We denote PGα(q) = det(qIn − Gα) the
characteristic polynomial of Gα. By letting det(qIn−Gα) =
0, we get the following equation,

((q − σ)2 − αεly−(q − σ))(q − 1 + αs)− α3l3εyy2−

−α(q − 1 + αs)(εlτy− + α(εl2yy2−)) = 0.
(15)

Since we have already shown that 1 is one of the eigenvalues
of G0, Eq. (15) is valid when q = 1 and α = 0. Take the
derivative on both sides of Eq. (15), and let q = 1 and α = 0,
we obtain that dq

dα |α=0,q=1 = −s < 0. This is saying that
when α increases from 0 slightly, ρ(Gα) will decrease first.

We now calculate all possible values of α for λ(Gα) = 1.
Let q = 1 in Eq. (15), and solve the step-size, α, we obtain
that, α1 = 0, α2 < 0, and

α3 = α =

√
(ετs)2 + 4εy(l + s)s(1− σ)2 − ετs

2εlyy−(l + s)
.

Since α has no other value for λ(Gα) = 1, we know that
λ(Gα) < 1 for α ∈ (0, α) by considering the fact that eigen-
values are continuous functions of matrix.

Lemma 4. With the step-size, α ∈ (0, α), where α is defined
in Eq. (13), the following statements hold for all k,

(a) there exist 0 < γ1 < 1 and 0 < Γ1 < ∞, where γ1 is
defined in Eq. (9), such that ‖Hk‖ = Γ1γ

k
1 ;

(b) there exist 0 < γ2 < 1 and 0 < Γ2 < ∞, such that∥∥Gk∥∥ ≤ Γ2γ
k
2 ;

(c) there exist γ = max{γ1, γ2} and Γ = Γ1Γ2/γ, such
that for all 0 ≤ r ≤ k,

∥∥Gk−r−1Hr

∥∥ ≤ Γγk.

We now present the main result of this paper in Theorem
2, which shows the linear convergence rate of the algorithm.

Theorem 2. With α ∈ (0, α), where α is defined in Eq. (13),
the sequence, {zk}, generated by Eq. (4), converges exactly
to the optimal solution, z∗, at a linear rate, i.e., there exist
some bounded constants M > 0 and γ < µ < 1, where γ is
used in Lemma 4(c), such that for any k,

‖zk − z∗‖ ≤Mµk. (16)
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Proof. We write Eq. (12) recursively, which results

tk ≤Gkt0 +

k−1∑
r=0

Gk−r−1Hrsr. (17)

By taking the norm on both sides of Eq. (17), and considering
Lemma 4, we obtain that

‖tk‖ ≤Γ2γ
k
2 ‖t0‖+

k−1∑
r=0

Γγk ‖sr‖ , (18)

in which we can bound ‖sr‖ as

‖sr‖ ≤‖xr − Y∞xr‖+ ‖Y∞‖ ‖xr − z∗‖+ ‖Y∞‖ ‖z∗‖
≤(1 + y) ‖tr‖+ y ‖z∗‖ . (19)

Therefore, we have that for all k

‖tk‖ ≤
(

Γ2‖t0‖+ Γ(1 + y)

k−1∑
r=0

‖tr‖+ Γyk‖z∗‖
)
γk.

(20)

Our first step is to show that ‖tk‖ is bounded for all k. It is
true that there exists some bounded K > 0 such that for all
k > K it satisfies that

(Γ2 + Γ(1 + 2y)k) γk ≤ 1. (21)

Define Φ = max0≤k≤K (‖tk‖ , ‖z∗‖), which is bounded
since K is bounded. It is true that ‖tk‖ ≤ Φ for 0 ≤ k ≤ K.
Consider the case when k = K + 1. By combining Eqs. (20)
and (21), we have that

‖tK+1‖ ≤Φ
(

Γ2 + Γ(1 + 2y)(K + 1)
)
γK+1 ≤ Φ. (22)

We repeat the procedures to show that ‖tk‖ ≤ Φ for all k.
The next step is to show that ‖tk‖ decays linearly. For

any µ satisfying γ < µ < 1, there exist a constant U such
that (µγ )k > k

U for all k. Therefore, by bounding all ‖tk‖ and
‖z∗‖ by Φ in Eq. (20), we obtain that for all k

‖tk‖ ≤Φ

(
Γ2 + Γ(1 + 2y)U

k

U

(
γ

µ

)k)
µk

≤Φ
(

Γ2 + Γ(1 + 2y)U
)
µk. (23)

It follows that ‖zk − z∗‖ and ‖tk‖ satisfy the relation that

‖zk − z∗‖ ≤
∥∥Y −1k xk − Y −1k Y∞xk

∥∥+
∥∥Y −1k Y∞z∗ − z∗

∥∥
+
∥∥Y −1k Y∞xk − Y −1k Y∞z∗

∥∥
≤y−(1 + y) ‖tk‖+ y−Tγ

k
1 ‖z∗‖ , (24)

where in the second inequality we use the relation ‖Y −1k Y∞−
In‖ ≤ ‖Y −1k ‖‖Y∞ − Yk‖ ≤ y−Tγ

k
1 achieved from Eq. (9).

By combining Eqs. (23) and (24), we obtain that

‖zk − z∗‖ ≤y−Φ [(1 + y)(Γ2 + Γ(1 + 2y)U) + T ]µk.

The desired result is obtained by letting M = y−Φ[(1 +
y)(Γ2 + Γ(1 + 2y)U) + T ].

4. NUMERICAL EXPERIMENTS

In this section, we compare the performances of algorithms
for distributed optimization over directed graphs. Our numer-
ical experiments are based on the distributed logistic regres-
sion problem over a directed graph:

z∗ = argmin
z∈Rp

β

2
‖z‖2 +

n∑
i=1

mi∑
j=1

ln
[
1 + exp

(
−
(
c>ijz

)
bij
)]
,

where for any agent i, it is accessible tomi training examples,
(cij , bij) ∈ Rp×{−1,+1}, where cij includes the p features
of the jth training example of agent i, and bij is the corre-
sponding label. In our setting, we have n = 10, mi = 10, for
all i, and p = 3. The first simulation, see Fig. 1 (Left), com-
pares the convergence rates between the proposed algorithm
and other methods that designed for directed graphs. We ap-
ply the same local degree weighting strategy to all methods.
The step-size used in SP [13], D-DSD [20], and WB-DSD
[23] is αk = 1/

√
k. The constant step-size used in DEXTRA

[26] and our algorithm is α = 1. It can be found that the
proposed algorithm and DEXTRA has a fast linear conver-
gence rate, while other methods are sub-linear. The second

0 500 1000
k

10-1

100

101

R
es
id
u
al

DEXTRA α=0.001
DEXTRA α=0.2
DEXTRA α=0.3
new algorithm α=0.001
new algorithm α=0.2
new algorithm α=0.3

Fig. 1: (Left) Convergence for related algorithms over directed networks.
(Right) Comparison with DEXTRA in terms of step-size ranges.

experiment compares the proposed algorithm and DEXTRA
in terms of their step-size ranges. We stick to the same local
degree weighting strategy for both algorithms. It is shown in
Fig. 1 (Right) that the greatest lower bound of DEXTRA is
round α = 0.2. In contrast, our algorithm can pick whatever
small values to ensure the convergence.

5. CONCLUSIONS

We focus on solving the distributed optimization problem
over directed graphs. The proposed algorithm converges at a
linear rate O(µk) for 0 < µ < 1 given the assumption that
the objective functions are strongly-convex. Our algorithm
supports a more realistic range of step-sizes, i.e., the great-
est lower bound of step-size for the proposed algorithm is
zero. This guarantees the convergence of our algorithm in the
distributed implementation as long as agents picking some
arbitrary small step-size.
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