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ABSTRACT

Vector approximate message passing (VAMP) is a computationally
simple approach to the recovery of a signal x from noisy linear mea-
surements y = Ax + w. Like the AMP proposed by Donoho,
Maleki, and Montanari in 2009, VAMP is characterized by a rigor-
ous state evolution (SE) that holds under certain large random matri-
ces and that matches the replica prediction of optimality. But while
AMP’s SE holds only for large i.i.d. sub-Gaussian A, VAMP’s SE
holds under the much larger class: right-rotationally invariant A. To
run VAMP, however, one must specify the statistical parameters of
the signal and noise. This work combines VAMP with Expectation-
Maximization to yield an algorithm, EM-VAMP, that can jointly re-
cover x while learning those statistical parameters. The fixed points
of the proposed EM-VAMP algorithm are shown to be stationary
points of a certain constrained free-energy, providing a variational
interpretation of the algorithm. Numerical simulations show that
EM-VAMP is robust to highly ill-conditioned A with performance
nearly matching oracle-parameter VAMP.

1. INTRODUCTION

Consider the problem of estimating a random vector x from linear
measurements y of the form

y = Ax+w, w ∼ N (0, θ−1
2 I), x ∼ p(x|θ1), (1)

where A ∈ R
M×N is a known matrix, p(x|θ1) is a density on x

with parameters θ1, w is additive white Gaussian noise (AWGN) in-
dependent of x, and θ2 > 0 is the noise precision (inverse variance).
The goal is to estimate x along while simultaneously learning the
unknown parameters θ := (θ1, θ2) from the data y and A. This
problem arises in Bayesian forms of linear inverse problems in sig-
nal processing, as well as in linear regression in statistics.

Even when the parameters θ are known, exact estimation or
inference of the vector x is intractable for general priors p(x|θ1).
The approximate message passing (AMP) algorithm [1] and its gen-
eralization [2] are powerful, relatively recent, algorithms that iter-
atively attempt to recover x. These methods are computationally
fast and have been successfully applied to a wide range of problems,
e.g., [3–11]. Most importantly, for large, i.i.d., sub-Gaussian random
matrices A, their performance can be exactly predicted by a scalar
state evolution (SE) [12,13] that provides testable conditions for op-
timality, even for non-convex priors. When the parameters θ in the
model are unknown, AMP can be combined with expectation maxi-
mization (EM) methods [14–16] for joint estimation and learning.

As it turns out, the AMP methods [1, 2] are fragile with re-
gard to the choice of the matrix A, and can perform poorly outside
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the special case of zero-mean, i.i.d., sub-Gaussian A. For exam-
ple, AMP diverges with even mildly non-zero-mean and/or mildly
ill-conditioned A [17]. Several techniques have been proposed to
improve the robustness of AMP including damping [17, 18], mean-
removal [17], and sequential updating [19], but these remedies have
limited effect.

Recently, the Vector AMP (VAMP) algorithm [20] was estab-
lished as an alternative to AMP that is much more robust to the
choice of matrix A. In particular, VAMP has a rigorous SE that
holds under large right-rotationally invariant A, i.e., A whose right
singular-vector matrix is uniformly distributed on the group of or-
thogonal matrices. VAMP can be derived in several ways, such as
through expectation propagation (EP) [21] approximations of belief
propagation [20] or through expectation consistent (EC) approxima-
tion [22–24]. But the existence of a rigorous state evolution estab-
lishes it firmly in the class of AMP algorithms.

However, a shortcoming of the VAMP method [20] is that it re-
quires that the parameters θ in the model (1) are known. In this
paper, we extend the VAMP method to enable learning of the pa-
rameters θ via Expectation-Maximization (EM) [25]. We call the
proposed method EM-VAMP. As described below, exact implemen-
tation of EM requires estimating the posterior density p(x|y, θ̂) for
each parameter estimate θ̂. This is computationally not possible for
the model (1). EM-VAMP is instead derived using a technique from
Heskes [26] for combining EM with approximate inference of the
posterior. Specifically, it is well-known that EM can be interpreted
as a method to minimize a certain energy function. Here, we con-
struct an approximation of the EM cost function that we call the
EM-VAMP energy function and derive an algorithm to minimize this
function.

Our main theoretical result shows that the fixed points of the EM-
VAMP method are local minima of the EM-VAMP energy function
and thus provide estimates of the parameters θ and posterior density
with a precise variational interpretation. By including the parame-
ter learning, this result generalizes the fixed-point energy-function
interpretation of EC given in [27, 28] and its variants [24].

Unfortunately, our results do not guarantee the convergence of
the method to the fixed point. However, in numerical experiments
on sparse regression problems, we show that the proposed method
exhibits extremely stable convergence over a large class of matri-
ces that cause AMP to diverge. Moreover, the performance of EM-
VAMP is almost identical to that of VAMP with known parameters.
In particular, the method is able to obtain close to the theoretically
optimal performance predicted by the replica method [29].
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2. EM-VAMP

2.1. Review of VAMP

To describe the VAMP method in [20], we need to introduce some
additional notation. First suppose that we can write the prior on x as

p(x|θ1) =
1

Z1(θ1)
exp [−f1(x|θ1)] , (2)

where f1(·) is some penalty function and Z1(θ1) is a normalization
constant. We assume that f1(·) is separable, meaning that

f1(x|θ1) =
N∑

n=1

f1n(xn|θ1), (3)

for scalar functions f1n. This corresponds to the case that, condi-
tional on θ1, x has independent components. Also, we write the
likelihood for the Gaussian model (1) as

p(y|x, θ2) := 1

Z2(θ2)
exp [−f2(x,y|θ2)] (4)

f2(x,y|θ2) := θ2
2
‖y −Ax‖2, Z2(θ2) =

(
2π

θ2

)N/2

. (5)

The joint density of x,y given parameters θ = (θ1, θ2) is then

p(x,y|θ) = p(x|θ1)p(y|x, θ2). (6)

The VAMP algorithm [20] considers the case where the param-
eters θ are known. In this case, VAMP attempts to compute belief
estimates of the posterior density p(x|y,θ) of the form (for i = 1, 2)

bi(x|ri, γi, θi) ∝ exp
[
−fi(x,y|θi)− γi

2
‖x− ri‖2

]
, (7)

where the parameters ri, γi are optimized by the algorithm. To keep
the notation symmetric, we have written f1(x,y|θ1) for f1(x|θ1)
even though the first penalty function does not depend on y.

The steps of VAMP are identical to those shown for proposed
EM-VAMP in Algorithm 1, except that VAMP skips the parameter
updates in lines 4 and 11. Instead, VAMP fixes θ̂ik for all iterations
k. In Algorithm 1, we have focused on the MMSE version of VAMP
since we are interested in approximate inference. There we use

E [φ(x)|ri, γi,θi] :=

∫
φ(x)bi(x|ri, γi,θi) dx

to denote the expectation with respect to the belief estimate bi(·) in
(7). Similarly, Cov(·|·) is the covariance matrix with respect to the
belief estimate and tr Cov(·|·) is its trace. Hence, the VAMP method
reduces the inference problem on the joint density (6) to computing
expectations and variances with respect to the belief estimates (7).

One of the main motivations of the VAMP method is that, for
the penalty functions (3) and (5) considered here, the expectation
and variance computations may be tractable at high dimensions. To
understand why, first observe that, under the assumption of a separa-
ble penalty function (3), the belief estimate b1(·) separates as

b1(x|r1, γ1,θ1) ∝
N∏

n=1

exp
[
−f1(xn|θ1)− γ1

2
(xn − r1n)

2
]
.

Thus, the expectation and variance computations in lines 5 and 6
decouple into N scalar computations. Furthermore, for the quadratic
penalty (5), the belief estimate b2(·) is Gaussian, i.e.,

b2(x|r2, γ2, θ2) ∝ exp

[
−θ2

2
‖y −Ax‖2 − γ2

2
‖r− x‖2

]
,

Algorithm 1 EM-VAMP

Require: Matrix A ∈ R
M×N , penalty functions fi(x,y|θi), mea-

surement vector y, and number of iterations Nit.
1: Select initial r10, γ10 ≥ 0, θ̂1,−1, θ̂2,−1.
2: for k = 0, 1, . . . , Nit − 1 do
3: // Input Denoising
4: θ̂1k = argmaxθ1

E
[
ln p(x|θ1)

∣∣r1k, γ1k, θ̂1,k−1
]

5: η−1
1k = (1/N) tr

[
Cov

(
x
∣∣r1k, γ1k, θ̂1k

)]
6: x̂1k = E

(
x
∣∣r1k, γ1k, θ̂1k

)
7: γ2k = η1k − γ1k
8: r2k = (η1kx̂1k − γ1kr1k)/γ2k
9:

10: // LMMSE estimation
11: θ̂2k = argmaxθ2

E
[
ln p(x,y|θ2)

∣∣r2k, γ2k, θ̂2,k−1]
12: η−1

2k = (1/N) tr
[
Cov

(
x
∣∣r2k, γ2k, θ̂2k)]

13: x̂2k = E
(
x
∣∣r2k, γ2k, θ̂2k)

14: γ1,k+1 = η2k − γ2k
15: r1,k+1 = (η2kx̂2k − γ2kr2k)/γ1,k+1
16: end for

with mean and covariance given by

E [x|r2, γ2, θ2] = Q−1
(
θ2A

Ty + γ2r
)

(8)

Cov [x|r2, γ2, θ2] = Q−1 (9)

Q = θ2A
TA+ γ2I. (10)

Although (8)-(9) may suggest that VAMP requires an N × N ma-
trix inverse at each iteration, it is shown in [20] that two M × N
matrix-vector multiplications per iteration are sufficient if the SVD
of A is precomputed before initialization. Thus, VAMP reduces the
intractable posterior inference problem to an iteration of N scalar es-
timation problems and 2 matrix-vector multiplies per iteration, just
like AMP.

2.2. Learning the parameters θ

To learn the parameters θ, the EM-VAMP methods adds two steps,
lines 4 and 11, to update θ̂ik . These maximizations are similar to
those in the EM method, and we formalize this connection in the next
section. The updates may be performed once per VAMP iteration, as
written, or several times per VAMP iteration, since in practice this
seems to speed convergence of EM-VAMP. For now, observe that
due to the structure of the prior in (2) and the likelihood in (4), we
have that

θ̂i,k+1 = argmin
θi

{
E

[
fi(x,y|θi)

∣∣∣rik, γik, θ̂ik

]
+ lnZi(θi)

}
.

(11)
This minimization is often tractable. For example, when the penalty
function corresponds to an exponential family (i.e., fi(x,y|θi) =
θT
iφi(x,y) for sufficient statistic φi(x,y)), the minimization in

(11) is convex. In particular, for the quadratic loss (5), the mini-
mization is given by

θ̂−1
2,k+1 =

1

N
E
[‖y −Ax‖2|r2k, γ2k, θ2k

]
=

1

N

[
‖y −Ar2k‖2 + tr(AQ−1

k AT)
]
, (12)
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where Qk = θ̂2kA
TA+γ2kI. As mentioned earlier, it is possible to

reduce the complexity of evaluating (12) by precomputing the SVD
of A [20], since tr(AQ−1

k AT) =
∑R

i=1 s
2
i /(θ2ks

2
i + γ2k) where

{si}Ri=1 are the non-zero singular values of A. In this case, the
update of θ2 is very simple, computationally.

3. FIXED POINTS OF EM-VAMP

We will now show that the parameter updates in EM-VAMP can be
understood as an approximation of the EM algorithm. We first briefly
review the standard energy-function interpretation of EM [25]. Con-
sider the problem of finding the maximum likelihood (ML) estimate
of the parameter θ:

θ̂ = argmax
θ

p(y|θ) = argmax
θ

∫
p(x,y|θ) dx. (13)

Due to the integration, this minimization is generally intractable.
EM thus considers an auxiliary function,

Q(θ, b) = − ln p(y|θ) +D(b‖p(·|y, θ)), (14)

defined for an arbitrary density b(x). In (14), D(b‖p(·|y, θ)) is the
KL divergence between b(x) and the posterior density p(x|y,θ).
Note that, for any parameter estimate θ,

min
b

Q(θ, b) = − ln p(y|θ),

where the minimum occurs at the posterior b̂(x) = p(x|y,θ).
Hence, the MLE (13) can, in principle, be found from the joint
minimization

θ̂ = argmin
θ

min
b

Q(θ, b). (15)

This fact leads to a natural alternating minimization,

E-step: b̂k = argmin
b

Q(θ̂k, b) = p(x|y, θ̂k) (16)

M-step: θ̂k+1 = argmin
θ

Q(θ, b̂k). (17)

This recursion is precisely the EM algorithm, written in a slightly
non-standard form. Specifically, (16) is the E-step, which computes
the posterior density of x given y and the current parameter estimate
θ̂k. A simple manipulation shows that

Q(θ, b) = −E [ln p(x,y|θ)|b]−H(b), (18)

where the expectation is with respect to the density b(x) and H(b) is
the differential entropy of b. Equation (18) shows that the minimiza-
tion in (17) can equivalently be written as

θ̂k+1 = argmax
θ

E

[
ln p(x,y|θ)

∣∣∣̂bk ] , (19)

which is a familiar expression for the M-step. Unfortunately, the
computation of the posterior density required by the E-step (16) is
generally intractable for joint density (6) considered here.

We thus consider an alternate energy function, similar to that
used by Heskes in [26] for understanding EM combined with belief
propagation-based inference. First observe that, using (18) and (6),
we can write the auxiliary function as

Q(θ, b) =

2∑
i=1

{E [fi(x,y|θi)|b] + lnZi(θi)} −H(b)

=

2∑
i=1

Di(b,θi) +H(b), (20)

where Di(b,θi) is the KL divergence,

Di(b,θi) = D
(
b
∥∥∥Zi(θi)

−1e−fi(·,y|θi)
)
. (21)

Now, given densities b1, b2 and q, we define the energy function

J(b1, b2, q,θ) := D1(b1,θ1) +D2(b2,θ2) +H(q), (22)

which matches the original auxiliary function Q(θ, b) under the
matching condition b = b1 = b2 = q. Hence, we can rewrite the
joint minimization (15) as

θ̂ = argmin
θ

min
b1,b2

max
q

J(b1, b2, q,θ) s.t. b1 = b2 = q. (23)

We call (22) the EM-VAMP energy function.
Now, as mentioned in the Introduction, VAMP—like many

algorithms—can be viewed as an example of expectation consistent
(EC) approximate inference [22–24]. Specifically, following the EC
framework, we relax the above GFE optimization by replacing the
constraints in (23) with so-called moment matching constraints:

E(xn|b1) = E(xn|b2) = E(xn|q), ∀n,
E(‖x‖2|b1) = E(‖x‖2|b2) = E(‖x‖2|q). (24)

Thus, instead of requiring a perfect match in the densities b1, b2, q
as in (23), we require only a match in their first moments and aver-
age second moments. Using the above approximation, we can then
attempt to compute parameter estimates via the minimization

θ̂ = argmin
θ

min
b1,b2

max
q

J(b1, b2, q,θ) s.t. (24) are satisfied. (25)

Our main result shows that the fixed points of EM-VAMP are
stationary points of the optimization (25). To state the result, we
write the Lagrangian of the constrained optimization (25) as

L(b1, b2, q,θ,β, γ) := J(b1, b2, q, θ)−
2∑

i=1

βT
i [E(x|bi)−E(x|q)]

+
2∑

i=1

γi
2

[
E(‖x‖2|bi)−E(‖x‖2|q)] , (26)

where β = (β1,β2) and γ = (γ1, γ2) represent sets of dual param-
eters for the first- and second-order constraints. We then have the
following.

Theorem 1. At any fixed point of the EM-VAMP algorithm with γ1+
γ2 > 0, we have

η1 = η2 = η := γ1 + γ2, (27a)

x̂1 = x̂2 = x̂ := (γ1r1 + γ2r2) /(γ1 + γ2). (27b)

Also, let βi := γiri, let b̂i be the density

b̂i(x) := bi(x|ri, γi, θ̂i), (28)

where bi(·) is given in (7) and let q̂(x) be the Gaussian density

q̂(x) ∝ exp
[
−η

2
‖x − x̂‖2

]
. (29)

Then, b̂i, θ̂, and q̂ are critical points of the Lagrangian (26) that
satisfy the moment matching constraints (24).

Due to space considerations, the proof is given in the full paper
[30]. To summarize, the proof is an adaptation of a similar result
in [24] with the addition of the parameters θ. The consequence of
this result is that, if the algorithm converges, then its limit points are
local minima of the EM-VAMP energy minimization.
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Fig. 1. For sparse linear regression, recovery NMSE versus con-
dition number of A. Also shown is the replica prediction of the
MMSE.

4. NUMERICAL EXPERIMENTS

While the above analysis characterizes the fixed points of EM-
VAMP, it does not provide any guarantees on the convergence of the
algorithm to the fixed points. To study the convergence and evaluate
the algorithm’s performance, we conducted a numerical experiment.

We considered sparse linear regression, where the goal is to re-
cover the signal x from measurements y from (1) without knowing
the signal parameters θ1 or the noise precision θ2 > 0. For our
experiment, we drew x from an i.i.d. Bernoulli-Gaussian (i.e., spike
and slab) prior,

p(xn|θ1) = (1− βx)δ(xn) + βxN (xn;μx, τx), (30)

where parameters θ1 = {βx, μx, τx} represent the sparsity rate
βx ∈ (0, 1], the active mean μx ∈ R, and the active variance τx > 0.
Following [17], we constructed A ∈ R

M×N from the singular value
decomposition (SVD) A = USVT, whose orthogonal matrices U
and V were drawn uniformly with respect to the Haar measure and
whose singular values si were constructed as a geometric series, i.e.,
si/si−1 = α ∀i > 1, with α and s1 chosen to achieve a desired
condition number s1/smin(M,N) as well as ‖A‖2F = N . It is shown
in [17, 18] that standard AMP (and even damped AMP) diverges
when the matrix A has a sufficiently high condition number. Thus,
this matrix-generation model provides an excellent test for the sta-
bility of AMP methods. Recovery performance was assessed using
normalized mean-squared error (NMSE) ‖x̂ − x‖2/‖x‖2 averaged
over 100 independent draws of A, x, and w.

Figure 1 shows NMSE versus condition number for sparse lin-
ear regression under M = 512, N = 1024, βx = 0.1, μx = 0,
and (τx, θ2) giving a signal-to-noise ratio of 40 dB. EM-VAMP was
initialized with βx = (M/2)/N , τx = ‖y‖2/‖A‖2Fβx, μx = 0,
and θ−1

2 = M−1‖y‖2. It is compared with (i) VAMP under perfect
knowledge of θ = {τw, βx, μx, τx}; (ii) the EM-AMP algorithm
from [15] with damping from [17]; and (iii) the replica prediction
for Bayes minimum MSE from [31]. It was recently shown [32, 33]
that the replica method gives the correct prediction in sparse linear
regression when A is i.i.d. Gaussian. Figure 1 shows that the NMSE
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Fig. 2. For sparse linear regression, recovery NMSE versus iteration
for condition number 32 in (a) and condition number 3162 in (b).

of EM-VAMP is nearly indistinguishable from that of VAMP and
much more robust than EM-AMP to ill-conditioning in A.

Figure 2(a) shows EM-VAMP and VAMP converging in ∼ 10
iterations (whereas EM-AMP requires > 100 iterations) at condition
number 32, and Figure 2(b) shows EM-VAMP converging in ∼ 20
iterations at condition number 3162. These plots suggest that the
convergence rate of EM-VAMP is i) nearly identical to that of genie-
aided VAMP and ii) relatively insensitive to the condition number of
A. We note that, in generating the above figures, we used multiple
updates of the noise precision θ2 per VAMP iteration. In particular,
(12) was iterated to convergence.

A Matlab implementation of our EM-VAMP method can be
found in the GAMPmatlab software package at
http://sourceforge.net/projects/gampmatlab/.

5. CONCLUSIONS AND FUTURE WORK

We presented an approach for recovering the signal x from AWGN-
corrupted linear measurements y = Ax+w by posing recovery in
the MMSE framework while simultaneously learning the parameters
θ governing the signal prior p(x|θ) and the AWGN variance. The
proposed method combines EM and VAMP algorithms for approx-
imate inference of the posterior. We showed that, if the algorithm
converges, then its fixed points coincide with stationary points of a
certain energy function. Simulations show the proposed method ex-
hibits robustness to the condition number of A and MMSE closely
matching that of the replica prediction under known θ.

While the algorithm has great potential, one outstanding issue
is that its convergence has not been established. One possible solu-
tion is to extend the convergence proofs in [24] or the state evolu-
tion analysis of VAMP [20]. Another avenue for future work is the
application of EM-VAMP to sparse Bayesian learning (SBL) [34].
SBL tackles sparse linear regression using a Gaussian-scale-mixture
prior p(x|θ1) = N (x;0,Diag(θ1)) with a deterministic unknown
variance vector θ1 ∈ R

N
+ learned by the EM algorithm. While the

standard SBL implementation uses an N ×N matrix inverse at each
EM iteration, the EM-VAMP implementation of SBL could avoid
matrix inversions by precomputing an SVD.
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