
A DISTRIBUTED CONSTRAINED-FORM SUPPORT VECTOR MACHINE

François D. Côté, Ioannis N. Psaromiligkos, and Warren J. Gross

Department of Electrical and Computer Engineering, McGill University, Montreal, Canada

ABSTRACT
Despite the importance of distributed learning, few fully distributed
support vector machines exist. In this paper, not only do we provide
a fully distributed nonlinear SVM; we propose the first distributed
constrained-form SVM. In the fully distributed context, a dataset is
distributed among networked agents that cannot divulge their data,
let alone centralize the data, and can only communicate with their
neighbors in the network. Our strategy is based on two algorithms:
the Douglas-Rachford algorithm and the projection-gradient method.
We validate our approach by demonstrating through simulations that
it can train a classifier that agrees closely with the centralized solution.

Index Terms— Optimization, classification, kernel method.

1. INTRODUCTION

Machine learning provides the tools for assimilating patterns in data.
Originally, these tools were designed to work on a single machine,
with a single dataset. But the reality today is that datasets are often
made up of several subsets, distributed among networked agents, and
centralizing the data is impossible. Distributed learning, therefore,
has become an important field of research [1].

Although there is a vast body of work on distributed algorithms,
there is a glaring gap in it: fully distributed support vector machines
are rare. In fact, only three exist [2]–[4]. This scarcity is not due
to disinterest—the SVM is the staple of machine learning—but to
technical challenges. Training an SVM, particularly a nonlinear one,
in a fully distributed way, is a “notoriously complex problem” [4].

In this paper, our goal is to develop a fully distributed nonlinear
constrained-form SVM. Training a classifier is usually done by solv-
ing a penalized problem, but it is also possible to solve a constrained
problem. Both problems are equivalent, yet there is strong motivation
for solving the constrained problem: the constraint parameter is easier
to determine than the penalization parameter [5].

Our objective is not to compare the constrained form to the
penalized form. The question of constrained vs. penalized form is
well documented [6], [7]. The penalized form is usually chosen,
as it yields an easier problem, but at the cost of an expensive cross
validation for determining the parameter. In contrast, the constraint
parameter, which corresponds to the noise level of the data, may
already be known in practice. Therefore, an approach that solves the
harder, constrained problem, may be at a significant advantage.

1.1. Related work and contributions

To the best of our knowledge, no prior work exists on a distributed
constrained-form SVM, only on the penalized form. The state of
the art is due to Forero et al. [2]. Their SVM is nonlinear. Other
algorithms are due to Wang et al. [3] and Scardapane et al. [4]. The
classifier of Wang et al. is nonlinear, but their algorithm must be rerun
whenever a new object enters the classifier. The approach of Scarda-
pane et al., while semisupervised, remains for linear classification.

Other distributed algorithms exist, but they are not fully distributed:
they require a central processor or all-to-all communications. A sur-
vey of these approaches is found in all three sources cited in this
paragraph.

Our approach differs from the approach of Forero et al. in several
respects. In addition to considering the constrained form of the SVM,
we provide an algorithm in which no step is left as an optimization
problem; we allow for overlap in the distributed data; we use a more
general dimensionality reduction technique by allowing for different
sets of arbitrary objects across the network; and we depart from the
customary alternating direction method of multipliers (ADMM).

Our contributions can be summarized as follows:

• We provide a distributed constrained-form SVM, Algorithm 1.
• We kernelize our approach. See Algorithm 2.
• We propose an efficient implementation of our kernel method.

This is Algorithm 3.
• The implementation is based on an epigraphical projection, for

which we offer a closed-form expression. See Proposition 1.

In this paper, our focus is on presenting the development of our
approach. For the sake of brevity, we omit technical proofs.

1.2. Problem statement

Consider a network of m agents, each interested in learning how to
tell apart two kinds of objects. Suppose that these objects belong to a
set X and a label of ±1 indicates to which class an object belongs.
Together, the agents have amassed a dataset of ` labeled examples,

(x1, y1), . . . , (x`, y`).

This dataset is known in the network only collectively, as a union of
possibly overlapping subsets. Even if each agent only knows some of
the examples, it must train a classifier as if it knew all of them.

Training an SVM consists of determining a decision function.
This function is parameterized by a vector w in a real Hilbert space
H and a number b in R. It is defined through the inner product inH
and a fixed mapping φ : X → H by

h(x;w, b) = 〈φ(x), w〉+ b, x ∈ X , (1)

and its sign predicts the label of an object x. For the constrained-form
SVM, the task is to find h such that w has the smallest possible norm
(induced by the inner product) and the classification score, given by
the value of h, has a total hinge loss (over the dataset) of at most ε.
In other words, finding h involves solving the following problem,
equivalent to the soft-margin formulation of the SVM [8]:

min
(w,b)∈H×R

‖w‖ s.t.
∑̀
k=1

max{0, 1−ykh(xk;w, b)} ≤ ε. (2)

Thus, the objective is

find h, as defined by (1), such that (w, b) solves (2). (3)

4242978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

To expound on the context, we make some assumptions:

1. Problem (2) has a solution.
2. The network of agents is connected.
3. There exists a (w, b) such that the inequality in (2) holds strictly.
4. Each agent knows m, ε, and its number of neighbors, as well as

other parameters needed for the algorithms.
5. For each training example that each agent knows, the agent knows

how many agents know the example.

By communicating only with its neighbors in the network, and
never sharing its part of the data, every agent must arrive at the same
solution for h. That is our objective: to develop a fully distributed
algorithm for solving (3).

2. DEVELOPMENT

In this section, we present the development of our approach. We draw
on our previous work on distributed optimization [9].

2.1. Data representation

Let us number the agents 1 to m and comment on Assumption 5.
Because of this assumption, agent i can express its part of the data
as a vector ai in R` and an operator Ai : R` → H. The vector
is defined entrywise: its kth entry, [ai]k, is equal to yk divided by
the number of agents that know (xk, yk), if agent i itself knows the
labeled example; and 0, otherwise. The operator is defined by

Aiu =
∑̀
k=1

[ai]k[u]kφ(xk), u ∈ R`.

The significance of this data representation is that we can express the
constraint in (2) in terms of ai and the adjoint of Ai,

∑̀
k=1

max
{

0, 1−
[m∑
i=1

(bai +A∗iw)
]
k

}
≤ ε, (4)

evoking the data portrayal in [9, Sec. 1.1].

2.2. Constraint separation

Developing a distributed algorithm for solving (2) requires that we
divide (4) among the agents. To do so, we assign auxiliary variables
to the agents. LetNi denote the set comprising agent i’s neighbors.
To each agent i, we assign, for each j inNi, a variable ∆vij in R`.
Let (wi, bi) be agent i’s copy of (w, b). By using [9, Prop. 2] and
recalling Assumption 2, we can prove that a necessary and sufficient
condition for (4) to hold is that for each agent i,

∑̀
k=1

max
{

0,
1

m
−
[
biai +A∗iwi +

∑
j∈Ni

∆vij
]
k

}
≤ ε

m
, (5)

and for every pair {i, j} of neighboring agents, ∆vij = −∆vji.

2.3. Problem reformulation

It is also useful to reformulate (2) in a way that accounts for the
structure of the network. This time, we assign not only variables, but
also functions to the agents. To each agent i, we assign a function f1,i,
and for each j in Ni, a variable (wij , bij) inH× R and a function
f2,ij . The function f1,i takes a value of +∞, unless (wij , bij) is the
same, (wi, bi), for every j in Ni, and (5) holds, in which case, the

function takes a value of ‖wi‖2. The function f2,ij takes a value of 0,
if (wij , bij) = (wji, bji) and ∆vij = −∆vji; and +∞, otherwise.

Let E denote the set that comprises every unordered pair of agents
that are neighbors. To solve (2), the agents can collaboratively solve
(cf. [9, eq. (4)])

min

m∑
i=1

f1,i +
∑
{i,j}∈E

f2,ij over all the variables. (6)

At the optimal values of all the variables, not only is (wi, bi) the
same for every agent i; it also solves (2).

If H is a finite coordinate space, then the distributed scaled
Douglas-Rachford algorithm [9, Algorithm 3] provides a distributed
procedure for solving (6) as well as a guarantee on convergence. (This
approach requires invertible matrices as parameters. For simplicity,
we use identity matrices.) The result of applying this procedure to
(6) is Algorithm 1.

Because of Assumption 3, we can show that [9, Prop. 1] applies,
establishing the convergence of Algorithm 1.

2.4. Dimensionality reduction

In deriving Algorithm 1, we assumed thatH was finite dimensional.
To make the algorithm applicable to the infinite-dimensional case,
we employ an approximation based on the dimensionality reduction
strategy of Forero et al. [2].

Suppose that every pair {i, j} of neighboring agents share `ij
arbitrary objects, x̃ij,k ∈ X for k = 1, . . . , `ij . For ease of notation,

Algorithm 1 Distributed constrained-form SVM

This algorithm provides each agent i with a sequence (wi,0, bi,0),
(wi,1, bi,1), . . . that converges, whenH is a finite coordinate space,
to the solution to (2).

The first step is to initialize the network with two real numbers,
γ > 0 and λ ∈ (0, 2), and to let each agent i choose, for each j in
Ni, three elements, z1,ij,0 ∈ H, z2,ij,0 ∈ R, and z3,ij,0 ∈ R`. Then,
in parallel with the other agents, each agent repeats the following
steps. After n iterations, agent i

1. receives z1,ji,n, z2,ji,n, and z3,ji,n from each neighbor j;

2. finds the element (wi, bi) inH× R and the family (∆vij)j∈Ni

of vectors in R` that together minimize

γ‖wi‖2 +
1

2

∑
j∈Ni

(
‖wi − z1,ji,n‖2

+
(
bi − z2,ji,n)2 + ‖∆vij + z3,ji,n‖2

)
subject to (5), and assigns the minimizers to (wi,n, bi,n) and
(∆vij,n)j∈Ni ;

3. updates, for each j inNi, three elements,

z1,ij,n+1 = z1,ij,n + λ
(
wi,n −

1

2
(z1,ij,n + z1,ji,n)

)
, (7)

z2,ij,n+1 = z2,ij,n + λ
(
bi,n −

1

2
(z2,ij,n + z2,ji,n)

)
, and (8)

z3,ij,n+1 = z3,ij,n + λ
(

∆vij,n −
1

2
(z3,ij,n − z3,ji,n)

)
, (9)

and sends them to neighbor j.

4243

let `ij = `ji and x̃ij,k = x̃ji,k. By using these objects, agent i can
form, for each j inNi, an operator Rij : R`ij → H defined by

Riju =

`ij∑
k=1

[u]kφ(x̃ij,k), u ∈ R`ij .

This operator allows us to modify Algorithm 1 so that the agents only
need to exchange finite-dimensional vectors.

We modify Algorithm 1 as follows: we make z1,ij,n a vector in
R`ij ; we replace ‖wi− z1,ji,n‖2 in Step 2 with ‖R∗ijwi− z1,ji,n‖2,
modifying the objective function; and we replace (7) with

z1,ij,n+1 = z1,ij,n + λ
(
rij,n −

1

2
(z1,ij,n + z1,ji,n)

)
, (10)

where rij,n = R∗ijwi,n.
With these modifications, we can prove that convergence is still a

guarantee, but to an approximate solution, possibly different for each
agent. As the number of common objects increases, the better the
approximation—a behavior corroborated by Forero et al. [2].

2.5. Kernel evaluations

IfH is infinite dimensional, then directly applying φ is impractical.
In fact, the agents may not even know φ. Rather, they may know a
function K : X × X → R such that K(x1, x2) = 〈φ(x1), φ(x2)〉
[10, Ch. 2]. If φ appears only in inner products, then K makes
working in H simple. The most popular choice is the Gaussian
kernel, for which

K(x1, x2) = exp
(
−‖x1 − x2‖2/C

)
, C > 0.

In the remainder of this paper, we assume that the agents know a
kernel K instead of φ.

In developing a kernel method for our approach, we will come
across several matrices whose entries depend on K. Table 1 provides
a description of these matrices.

2.6. Duality

Because the agents know K and not φ, they must determine h using
K. Duality allows us to do this.

Let ηi be a vector in R`. If

[ηi]k ≥ 0 and [ηi]k ≥
1

m
−
[
biai +A∗iwi +

∑
j∈Ni

∆vij
]
k
∀k

and ∑̀
k=1

[ηi]k ≤
ε

m
,

then (5) must be true. To express the problem in Step 2 of Algo-
rithm 1, which now includes the variable ηi, we use duality. Let us
introduce dual variables µi and ξi in R` and νi in R such that

[µi]k ≥ 0 and [ξi]k ≥ 0 ∀k and νi ≥ 0.

The Lagrangian is given by the modified objective function described
in Section 2.4 with the following added to it:

2γ

(
−µTi

(
− 1

m
1 + biai +A∗iwi +

∑
j∈Ni

∆vij + ηi
)

+ νi
(
1T ηi −

ε

m

)
− ξTi ηi

)
,

where the superscript T denotes the transpose, 1 indicates the vector
of all ones, and the factor of 2γ is for mathematical convenience.

Matrix Equal to Size Entry (k, k′)

Gi A∗iAi `× ` [ai]k[ai]k′K(xk, xk′)
Mij R∗ijAi `ij × ` [ai]k′K(x̃ij,k, xk′)

G̃ijj′ R∗ijRij′ `ij × `ij′ K(x̃ij,k, x̃ij′,k′)

Block matrix Description

M̃i Blocks indexed byNi ×Ni. Block (j, j′) is G̃ijj′ .
M̃ij This is block column j of M̃i.
Mi Stacked blocks indexed byNi. Block j is Mij .

Table 1. Description of matrices.

Let µi,n and νi,n denote the optimal values of the dual variables
µi and νi. At the optimal values of all the variables, the gradient of
the Lagrangian with respect to (wi, bi), (∆vij)j∈Ni , and ηi must be
zero. From this fact, we can show that

∆vij,n = 2γµi,n − z3,ji,n (11)

and
bi,n =

1

mi

(
2γaTi µi,n +

∑
j∈Ni

z2,ji,n
)

, (12)

where mi denotes the cardinality ofNi. Let the family (z1,ji,n)j∈Ni

be in the form of a stacked vector, and let I denote the identity matrix.
By defining

Ji,γ = (M̃i + 2γI)−1

and

µ̃i,n =
1

2γ

(
I − Ji,γM̃i

)
(z1,ji,n)j∈Ni − Ji,γMiµi,n, (13)

we can show that

rij,n = Mijµi,n + M̃T
ij µ̃i,n. (14)

By defining

pi,n =
1

mi

∑
j∈Ni

(z2,ji,nai −miz3,ji,n)

− 1

m
1 +

1

2γ
MT
i (I − M̃iJi,γ)(z1,ji,n)j∈Ni (15)

and
Hi = γmiI +

γ

mi
aia

T
i +

1

2
(Gi −MT

i Ji,γMi),

we can show that (µi,n, νi,n) corresponds to the solution to

min
(µi,νi)∈S

µTi Hiµi + µTi pi,n + νi
ε

m
, (16)

where S is an epigraph that can be expressed as

{(µ, ν) ∈ R` × R : 0 ≤ [µ]k ≤ ν ∀k}.

From the results in this section, we can also use the kernel to
express the approximation of h provided by our approach:

hi,n(x) =
∑̀
k=1

[ai]k[µi,n]kK(x, xk)

+
∑
j∈Ni

`ij∑
k=1

[µ̃i,n]kK(x, x̃ij,k) + bi,n, x ∈ X . (17)

Through duality, we have described the modified algorithm using
kernel evaluations. This constitutes our main result, Algorithm 2.

4244

Algorithm 2 Kernelized distributed constrained-form SVM

By carrying out the following steps, each agent i obtains successive
approximations, hi,0, hi,1, . . . , of the function h that solves (3).

The first step is to initialize the network with two real numbers,
γ > 0 and λ ∈ (0, 2), and to let each agent i choose, for each j inNi,
three elements, z1,ij,0 ∈ R`ij , z2,ij,0 ∈ R, and z3,ij,0 ∈ R`. Then,
in parallel with the other agents, each agent repeats the following
steps. After n iterations, agent i

1. receives z1,ji,n, z2,ji,n, and z3,ji,n from each neighbor j;

2. computes (15), solves (16), evaluates (12) and (13), and obtains
hi,n from (17);

3. computes (11) and (14), and updates, for each j in Ni, three
elements, z1,ij,n+1, z2,ij,n+1, and z3,ij,n+1, via (10), (8), and
(9), and sends these three elements to neighbor j.

2.7. Implementation

Because we have to solve (16) at every iteration of Algorithm 2, it is
important that we do so efficiently.

To solve the problem, we can use a projection-gradient method
[11, Corollary 27.10, p. 406], computing, for t = 0, 1, . . . ,

(µi,n,t+1, νi,n,t+1) =

projS

(
µi,n,t − δi(2Hiµi,n,t + pi,n), νi,n,t − δi

ε

m

)
, (18)

where δi is a real number in (0, 2/Li), and Li—given by twice the
spectral norm of Hi—is the Lipschitz constant of the gradient of the
objective function in (16). We have found that two iterations of this
method suffice to maintain the convergence of our approach provided
that we initialize (µi,n,0, νi,n,0) to (µi,n−1, νi,n−1). We describe
this subroutine in Algorithm 3.

To compute the projection, we can prove the following result,
inspired by an epigraphical projection in the context of a centralized
multiclass constrained-form SVM [5, Prop. 3.3].

Proposition 1. Let u be a vector in R`, and let ū denote u with
entries sorted in ascending order. Let v be a real number. Define

qk = max{0, (v+ [ū]k + · · ·+ [ū]`)/(`+ 2− k)}, k = 1, . . . , `.

Then, at most one of the following inequalities is true:

q1 ≤ [ū]1, [ū]1 < q2 ≤ [ū]2, . . . , [ū]`−1 < q` ≤ [ū]`.

Set ν′ = qk for the qk such that the inequality is true; if none is true,
set ν′ = max{0, v}. The projection (µ, ν) of the point (u, v) on S is
such that

[µ]k = median{0, [u]k, ν
′} ∀k and ν = ν′.

Algorithm 3 Implementation of Step 2 of Algorithm 2

During the initialization of Algorithm 2, each agent i chooses a point
(µi,−1, νi,−1) in R` × R and a real number δi in (0, 2/Li).

At Step 2, agent i

a) sets (µi,n,0, νi,n,0) = (µi,n−1, νi,n−1);

b) computes (15), then (18) for t = 0 and t = 1 using Proposition 1;

c) sets (µi,n, νi,n) = (µi,n,2, νi,n,2), computes (12) and (13), and
obtains hi,n from (17).

−5 0 5
−5

0

5

n = 100 n = 500 n = 1000

n = 10000

0 10000
0.01

0.1

1
N = 50

N = 100

N = 500

Iteration n

R
el

at
iv

e
er

ro
r

Fig. 1. Agent 1’s decision boundary () closely agrees with the
centralized one () after 10000 iterations of Algorithm 2 when
the agents share 500 points. As the number of these points increases
(see), the closer to the centralized result the agent can get.

3. SIMULATIONS

In this section, we illustrate the effectiveness of our approach.
We consider a training dataset of 24 objects in R2 from two

equiprobable classes. In one class, the objects arise from a normal
distribution of mean (0

0) and covariance (0.2 0
0 0.3). In the other class,

the objects arise from a mixture of two normal distributions, one with
proportion 0.3 having mean

(−2
−2

)
and covariance (0.5 0

0 1), and the
other having mean (2

2) and covariance (0.5 0
0 2).

We consider a network of six agents as in [9, Sec. 4]. The agents
each know a different subset of four labeled objects. In Fig. 1, for ex-
ample, the circled points are those that agent 1 knows. All the agents
know the same N arbitrary points whose entries are drawn uniformly
between the minimum and maximum values of the corresponding
coordinate in the dataset. We set ε, γ, and λ to 1 and δi to 1.99/Li.
The agents use a Gaussian kernel with C = 1.8.

Fig. 1 illustrates the convergence of Algorithm 2 (with the im-
plementation provided by Algorithm 3). It shows the relative error,√

‖w1,n − w∗‖2 + (b1,n − b∗)2
‖w∗‖2 + (b∗)2

,

between agent 1’s approximation (w1,n, b1,n) and the result (w∗, b∗)
obtained centrally (the relative error can be computed using kernel
evaluations). The figure also shows the evolution of agent 1’s decision
boundary. Even if the agent only knows some of the training points,
it obtains almost the same decision boundary as if it knew all of them.

4. CONCLUSION

In this paper, we have developed a distributed SVM algorithm. The
machinery behind our approach consists of the Douglas-Rachford
algorithm and the projection-gradient method. We have provided an
implementation based on an efficient epigraphical projection.

Our study demonstrates that it is possible to train a nonlinear
constrained-form SVM in a fully distributed way, and that despite
the complexity of the problem, it is possible to train the classifier
efficiently, using a sequence of closed-form steps.

4245

5. REFERENCES

[1] D. Peteiro-Barral and B. Guijarro-Berdiñas, “A survey of meth-
ods for distributed machine learning,” Prog. Artif. Intell., vol. 2,
no. 1, pp. 1–11, 2013.

[2] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based
distributed support vector machines,” J. Mach. Learn. Res.,
vol. 11, pp. 1663–1707, 2010.

[3] D. Wang, J. Zheng, Y. Zhou, and J. Li, “A scalable support
vector machine for distributed classification in ad hoc sensor
networks,” Neurocomputing, vol. 74, no. 1–3, pp. 394–400,
2010.

[4] S. Scardapane, R. Fierimonte, P. Di Lorenzo, M. Panella, and
A. Uncini, “Distributed semi-supervised support vector ma-
chines,” Neural Net., vol. 80, pp. 43–52, 2016.

[5] G. Chierchia, N. Pustelnik, J.-C. Pesquet, and B. Pesquet-
Popescu, “A proximal approach for sparse multiclass SVM,”
arXiv:1501.03669, 2015.

[6] L. Oneto, S. Ridella, and D. Anguita, “Tikhonov, Ivanov and
Morozov regularization for support vector machine learning,”
Mach. Learn., vol. 103, no. 1, pp. 103–136, 2016.

[7] D. Lorenz and N. Worliczek, “Necessary conditions for varia-
tional regularization schemes,” Inverse Probl., vol. 29, no. 7,
2013.

[8] C. Cortes and V. Vapnik, “Support-vector networks,” Mach.
Learn., vol. 20, no. 3, pp. 273–297, 1995.

[9] F. D. Côté, I. N. Psaromiligkos, and W. J. Gross, “In-network
linear regression with arbitrarily split data matrices,” in Proc.
IEEE Global Conf. Signal and Information Processing, 2016,
pp. 580–584.

[10] B. Schölkopf and A. J. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond.
Cambridge, MA: MIT Press, 2002.

[11] H. H. Bauschke and P. L. Combettes, Convex Analysis and
Monotone Operator Theory in Hilbert Spaces. New York:
Springer, 2011.

4246

