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ABSTRACT

In diffusion social learning over weakly-connected graphs, it has
been shown that influential agents end up shaping the beliefs of non-
influential agents. In this paper, we analyse this control mechanism
more closely and reveal some critical properties. In particular, we
characterize the set of beliefs that can be imposed on non-influential
agents (i.e., the set of attainable beliefs) and how the graph topology
of these latter agents helps resist manipulation but only to a certain
degree. We also derive a design procedure that allows influential
agents to drive the beliefs of non-influential agents to desirable at-
tainable states. We illustrate the results with two examples.

Index Terms— Weakly-connected networks, social learning,
diffusion strategy, belief control.

1. INTRODUCTION AND MOTIVATION

Several studies have examined the propagation of information over
social networks and the influence of graph topology on this dynam-
ics [1–12]. In recent work [11, 12], an intriguing phenomenon was
revealed whereby it was shown that weakly-connected graphs enable
certain agents to control the opinion of other agents to great degree,
irrespective of the observations sensed by these latter agents. For
example, agents can be made to believe that it is “raining” while
they happen to be observing “sunny conditions”. Weak graphs arise
in many contexts, including in popular social platforms like Twitter
and similar venues. In these graphs, the topology consists of multi-
ple sub-networks where at least one sub-network (called a sending
sub-network) feeds information in one direction to other network
components without receiving back any (or being interested in any)
information from them. For such networks, it was shown in [12]
that, irrespective of the local observations sensed by the receiving
networks, a sending sub-network can end up playing a domineering
effect and influence the beliefs of the other groups in a significant
manner. In particular, receiving agents can be made to arrive at in-
correct inference decisions; they can also be made to disagree on
their inferences among themselves.

The purpose of this article is three-fold. First, to show that the
internal graph structure of receiving networks imposes a form of re-
sistance to manipulation, but only to a certain degree. Second, to
characterize the set of beliefs that can be imposed on receiving net-
works. And, third, given an attainable desirable response, to develop
a control mechanism that allows sending networks to force the re-
ceiving networks to behave in that manner.

This work was supported in part by NSF grants ECCS-1407712 and
CCF-1524250, and DARPA project N66001-14-2-4029. Emails: {hsalami,
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1.1. Weakly-Connected Graphs

As described in [11, 12], a weakly-connected network consists of
two types of sub-networks: S (sending) sub-networks and R (re-
ceiving) sub-networks. Each individual sub-network is a connected
graph where any two agents are connected by a path. In addition,
every sending sub-network is also strongly-connected, meaning that
at least one of its agents has a self-loop. The flow of information
between S and R sub-networks is asymmetric, as it only happens
in one direction from S to R. Figure 1 shows one example of a
weakly-connected network. The two top sub-networks are sending
sub-networks and the two bottom sub-networks are receiving sub-
networks. The weights on the connections from S toR networks are
positive but can be small.

Fig. 1: An example of a weakly connected network. The two sub-
networks on top are S−type, while the two sub-networks in the bot-
tom are R−type.

We index strongly-connected sub-networks by s = {1, 2, · · · , S},
and receiving sub-networks by r = {S + 1, . . . , S +R}. Each sub-
network s has Ns agents, and the total number of agents in the
S sub-networks is denoted by NgS . Similarly, each sub-network
r has Nr agents, and the total number of agents in the R sub-
networks is denoted by NgR. We let N denote the total number
of agents across all sub-networks, i.e., N = NgS + NgR, and use
N = {1, 2, · · · , N} to refer to the indexes of all agents. We assign
a pair of non-negative weights, {ak`, a`k}, to the edge connecting
any two agents k and `. The scalar a`k represents the weight with
which agent k scales data arriving from agent ` and, similarly, for
ak`. We let Nk denote the neighborhood of agent k, which consists
of all agents connected to k. Each agent k scales data arriving from
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its neighbors in a convex manner, i.e., the weights satisfy:

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (1)

Using the same notation from [11, 12], we continue to assume that
the agents are numbered such that the indexes ofN represent first the
agents from the S sub-networks, followed by those from the R sub-
networks. In this way, if we collect the {a`k} into a large N × N
combination matrix A, then A will have an upper block-triangular
structure of the following form:

Subnetworks:1,2,...,S︷ ︸︸ ︷ Subnetworks:S+1,S+2,...,S+R︷ ︸︸ ︷

A1 0 . . . 0 A1,S+1 A1,S+2 . . . A1,S+R

0 A2 . . . 0 A2,S+1 A2,S+2 . . . A2,S+R

...
...

. . .
...

...
...

. . .
...

0 0 . . . AS AS,S+1 AS,S+2 . . . AS,S+R

0 0 . . . 0 AS+1 AS+1,S+2 . . . AS+1,S+R

0 0 . . . 0 0 AS+2 . . . AS+2,S+R

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . AS+R


(2)

The matrices {A1, · · · , AS} on the upper left corner are left-
stochastic primitive matrices corresponding to the S strongly-
connected sub-networks. Likewise, the matrices {AS+1, · · · , AS+R}
in the lower right-most block correspond to the internal weights of
the R sub-networks. We denote the block structure of A in (2) by:

A
∆
=

[
TSS TSR

0 TRR

]
(3)

2. DIFFUSION SOCIAL LEARNING

We assume that each sub-network has a true state value, denoted
generically by θ◦, which may differ from one sub-network to an-
other. We denote by Θ the set of all possible states, by θ◦s the true
state of sending sub-network s and by θ◦r the true state of receiving
sub-network r, where both θ◦s and θ◦r are in Θ. At each time i, each
agent k will possess a belief µk,i(θ), which represents a probability
distribution over θ ∈ Θ. Agent k continuously updates its belief
according to two information sources:

1. The first source consists of observational signals {ξk,i}
streaming in locally at agent k. These signals are generated
according to some known likelihood function parametrized
by the true state of agent k. We denote the likelihood function
by Lk(.|θ◦r ) if agent k belongs to receiving sub-network r or
Lk(.|θ◦s ) if agent k belongs to sending sub-network s.

2. The second source consists of information received from the
neighbors of agent k, denoted by Nk. Agent k and its neigh-
bors are connected by edges and they continuously commu-
nicate and share their opinions.

Using these two pieces of information, each agent k then updates its
belief according to the following diffusion social learning rule [1]:

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θ µk,i−1(θ′)Lk(ξk,i|θ′)

µk,i(θ) =
∑
`∈Nk

a`k ψ`,i(θ)
(4)

A consensus-based strategy can also be employed, as was done in
[2, 13], although the latter reference focuses instead on the problem
of pure averaging and not on social learning and requires the exis-
tence of certain anchor nodes. Here, we assume all agents are ho-
mogeneous and focus on the diffusion strategy due to its enhanced
performance, as observed in [1] and as further explained in the treat-
ments [14, 15]. Other models for social learning can be found in
[3, 4, 6, 9, 10]. In the first step of (4), agent k updates its belief,
µk,i−1(θ), based on its observed private signal ξk,i by means of
the Bayesian rule and obtains an intermediate belief ψk,i(θ). In the
second step, agent k learns from its social neighbors.

When agents of sending sub-networks follow this model, they
can learn their own true states. It was shown in [1] that

lim
i→∞

µk,i(θ
◦
s )

a.s.
= 1 (5)

for any agent k that belongs to sending sub-network s. On the other
hand, agents of receiving sub-networks will not be able to find their
true states. Instead, their beliefs will converge to a fixed distribution
defined over the true states of the sending sub-networks as follows.
First, we collect in the column vectors

µS,i(θ)
∆
= col

{
µ1,i(θ),µ2,i(θ), . . . ,µNgS ,i

(θ)
}

(6)

µR,i(θ)
∆
= col

{
µNgS+1,i(θ),µNgS+2,i(θ), . . . ,µN,i(θ)

}
(7)

all beliefs from all agents in the S and R sub-networks respectively.
Note that these belief vectors are evaluated at a specific θ ∈ Θ.
Then, under some technical assumptions, it was shown in [12, 16]
that

lim
i→∞

µR,i(θ) = WT
(

lim
i→∞

µS,i(θ)
)

(8)

where W is the NgS ×NgR matrix given by:

W
∆
= TSR(I − TRR)−1 (9)

and I denotes the identity matrix of size NgR. The matrix W has
non-negative entries and the sum of the entries in each of its columns
is equal to one [11]. We can expand (8) to reveal the influence of the
sending networks more explicitly as follows.

Let wT
k denote the row in WT that corresponds to receiving

agent k and partition it into sub-vectors as follows1:

wT
k =

[
wT
k,N1

wT
k,N2

. . . wT
k,NS

]
(10)

where the {N1, N2, . . . , NS} are the number of agents in each sub-
network s ∈ {1, 2, . . . , S}. Moreover, let

eθ,θ◦s
∆
=

{
1Ns , if θ = θ◦s

0Ns , otherwise
(11)

where 1Ns denotes a column vector of length Ns whose elements
are all one. Similarly, 0Ns denotes a column vector of length Ns
whose elements are all zero. Then, according to (8), we have

lim
i→∞

µk,i(θ) =

S∑
s=1

wT
k,Ns

eθ,θ◦s (12)

Result (12) means that the belief of receiving agent k will con-
verge to a distribution defined over the true states of the sending
sub-networks: Θ• = {θ◦1 , θ◦2 , . . . , θ◦S}.

1The index of the row in WT that corresponds to agent k is k −NgS .
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3. BELIEF CONTROL MECHANISM

Results (8) and (12) suggest that it should be possible for influential
agents to control the steady-state beliefs of receiving agents. Ex-
pression (8), in particular, shows how the limiting distributions of
the sending sub-networks determine the limiting distributions of the
receiving sub-networks through the matrix W = TSR(I −TRR)−1.
Two questions arise at this stage: (a) can receiving agents be driven
to arbitrary beliefs or does the network structure limit the scope of
control by the influential agents? and (b) even if there is a limit to
what influential agents can accomplish, how can they ensure that re-
ceiving agents will end up with particular beliefs?

To answer these questions, we start by referring to (12). Let
qk(θ) denote the desired final distribution for receiving agent k. We
would like to examine first how the entries of TSR should be de-
signed to force the receiving agent to converge to this specific qk(θ).
We would also like to examine whether it is possible to force agent
k to converge to any qk(θ).

3.1. Characterizing Attainable Beliefs

As is already evident from (12), the belief qk(θ) needs to be a prob-
ability distribution defined over the true states of all sending sub-
networks, Θ• = {θ◦1 , θ◦2 , . . . , θ◦S}. We assume, without loss of gen-
erality, that the true states of the sending sub-networks are distinct,
so that |Θ•| = S. If two or more sending sub-networks have the
same true state, we can blend them together and treat them as corre-
sponding to one sending sub-network; although this enlarged com-
ponent is not strongly-connected, it nevertheless consists of strongly-
connected elements and the same arguments will apply.

We collect the desirable limiting beliefs for all receiving agents
into the vector:

qR(θ)
∆
= col

{
qNgS+1,i(θ), qNgS+2,i(θ), . . . , qN,i(θ)

}
(13)

which has length NgR. Then, from (8), we must have:

qTR(θ) =
(

lim
i→∞

µS,i(θ)
)T
W (14)

Evaluating this expression at the successive states {θ◦1 , θ◦2 , . . . , θ◦S},
we get

qTR(θ◦1)

qTR(θ◦2)
...

qTR(θ◦S)


︸ ︷︷ ︸

∆
= Q

=


1T
N1

0 . . . 0

0 1T
N2

. . . 0
...

...
. . .

...
0 0 . . . 1T

NS


︸ ︷︷ ︸

∆
= E

W (15)

where Q is the S × NgR matrix that collects the desired beliefs for
all receiving agents. Using (9), we rewrite (15) more compactly as

ETSR = Q (I − TRR) (16)

Therefore, given Q and TRR, the design problem becomes one of
finding a matrix TSR that satisfies (16) subject to

1
TTSR + 1

TTRR = 1
T (17)

TSR < 0 (18)

TSR(j, k) = 0, if j does not feed k (19)

The first condition (17) is because the entries on each column of
A defined in (3) add up to one. The second condition (18) ensures
that each element of TSR is a non-negative combination weight (the
operator < is for element-wise comparison). The third condition
(19) takes into account the network structure, i.e., if receiving agent
k is not connected to sending agent j, the corresponding entry in
TSR should be zero.

It turns out that the solution to the control problem (16)–(19) can
be characterized analytically, along with conditions for when a solu-
tion exists. We provide the answer here but omit the derivations due
to space limitations. Let tSR,k, tRR,k and qk, respectively, denote
the columns of TSR, TRR and Q that correspond to receiving agent
k. Then,

vk
∆
= qk −QtRR,k (20)

denotes the column that corresponds to agent k in the right hand-
side of relation (16). If agent k is not connected to any agent of
sub-network s, then the corresponding entry in vk should be zero,
i.e.,

vk(s) = qk(θ◦s )−
∑

`>NgS

a`kq`(θ
◦
s ) = 0 (21)

Otherwise, no solution exists for the problem. This means that to
force receiving agent k to adopt a specific belief at θ◦s , this agent
must be connected to at least one agent from sending sub-network s,
or the cumulative influence from the agent’s neighbours must match
the desired limiting belief. In this case, we set the corresponding
entries of tSR,k to zero.

If agent k is connected to some agents of sub-network s, then
the corresponding entry in vk should be non-negative, i.e.,

vk(s) = qk(θ◦s )−
∑

`>NgS

a`kq`(θ
◦
s ) ≥ 0 (22)

Let tsSR,k denote the block of tSR,k that includes the weights with
which agent k scales data arriving from all agents of sending sub-
network s. Some of these entries should be set to zero if they corre-
spond to the agents not connected to agent k. We remove these zero
elements from tsSR,k and label the modified block as ts

′
SR,k. Then,

if condition (22) is satisfied, then the solution takes the following
form:

ts
′
SR,k =

vk(s)

Nk
s

1Nk
s

+

(
INk

s
− 1

Nk
s

1Nk
s
1
T
Nk

s

)
yNk

s
(23)

where Nk
s is the number of agents of sending sub-network s that

are connected to agent k and yNk
s

is an arbitrary vector that must be

chosen so that ts
′
SR,k � 0.

Theorem 1 (Attainable beliefs and control mechanism) Let C
denote an S×NgR binary matrix, with as many rows as the number
of sending sub-networks and as many columns as the number of re-
ceiving agents. The (s, r)−th entry of C is one if receiving agent r
is connected to sending sub-network s; otherwise, it is zero. Define
the difference matrix

V
∆
= Q(I − TRR) (24)

Then, a given belief matrix Q is attainable if, and only if, the entries
of V will be zero wherever the entries of C are zero, and the entries
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of V will be non-negative wherever the entries of C are one. That
is, the matrices V and C must have the same structure with the unit
entries of C translated into non-negative entries in V . In that case,
the control mechanism can be implemented by selecting the columns
of the combination matrix TSR according to (23).

The belief of a particular receiving agent k can be controlled to
qk, (the k−th column of Q), if the corresponding columns of V and
C have the same structure, as described above. �

We next illustrate the results with some examples.

3.2. Case Involving Broadband Influence

Consider the network shown in Fig. 2 (Left). It consists of N = 8
agents, two sending sub-networks and one receiving sub-network,
with the following combination matrix:

A =



0.2 0.2 0.8 0 0 0 0 ×
0.5 0.4 0.1 0 0 × 0 0
0.3 0.4 0.1 0 0 × × 0
0 0 0 0.4 0.3 × 0 ×
0 0 0 0.6 0.7 0 × 0

0 0 0 0 0 0.2 0.3 0.2
0 0 0 0 0 0.1 0.2 0.3
0 0 0 0 0 0.1 0.2 0.1


(25)

We assume that there are 3 possible states Θ = {θ◦1 , θ◦2 , θ◦3}, where
θ◦1 is the true event for the first sending sub-network, θ◦2 is the true
event for the second sending sub-network, and θ◦3 is the true event
for the receiving sub-network.

Let us design TSR so that all receiving agents’ beliefs converge
to the same belief, say,

Q =

[
0.2 0.2 0.2
0.8 0.8 0.8

]
(26)

Computing vk defined in (20) for each receiving agent k, we obtain:

v6 =

[
0.12
0.48

]
, v7 =

[
0.06
0.24

]
, v8 =

[
0.08
0.24

]
(27)

Note that in this example, all receiving agents are connected to all
sending sub-networks. Therefore the only requirement is to have all
the entries of vk non-negative, which is the case. Therefore, from
(23), one possible choice for TSR is the following:

TSR =


0 0 0.08

0.06 0 0
0.06 0.06 0
0.48 0 0.32

0 0.24 0

 (28)

To verify that the beliefs of the receiving agents converge in this case
to the desired belief (26), we compute the matrix WT from (9):

0.0169 0.0839 0.0992
∣∣ 0.7390 0.0610

0.0322 0.0394 0.1284
∣∣ 0.4441 0.3559

0.1034 0.0318 0.0648
∣∣ 0.6678 0.1322


0.2 0.8

0.2 0.8

0.2 0.8

(29)

Then, by (12), we compute the limiting beliefs at θ◦1 and θ◦2 , by
summing the elements of the corresponding blocks and we obtain
the required limiting beliefs (26).

Fig. 2: (Left) Broadband influence. (Right) Narrowband influence.

3.3. Case Involving Narrowband Influence

Consider now the network shown in Fig. 2 (Right) with combination
matrix:

A =



0.2 0.2 0.8 0 0 0 0 ×
0.5 0.4 0.1 0 0 × 0 ×
0.3 0.4 0.1 0 0 × × 0
0 0 0 0.4 0.3 × 0 0
0 0 0 0.6 0.7 0 × 0

0 0 0 0 0 0.2 0.3 0.1
0 0 0 0 0 0.1 0.2 0.6
0 0 0 0 0 0.1 0.2 0


(30)

The main difference between both networks in Fig. 2 is that now
agent 8 is not connected to sending sub-network 2. Let us consider
the case where we want to design TSR so that the desired limiting be-
liefs are as follows (i.e., a situation where discord among the agents
is being promoted):

Q =

[
0.8 0.7 0.8
0.2 0.3 0.2

]
(31)

Computing vk for each receiving agent k, we obtain:

v6 =

[
0.49
0.11

]
, v7 =

[
0.16
0.14

]
, v8 =

[
0.3
0

]
(32)

Note that in this example, agent 8 is not connected to the second
sending sub-network, but the controlling scheme can still work be-
cause condition (21) is satisfied. Therefore, one possible choice for
TSR is the following:

TSR =


0 0 0.3/2

0.49/2 0 0.3/2
0.49/2 0.16 0
0.11 0 0

0 0.14 0

 (33)

To verify that the beliefs of the agents converge in this case to the
desired belief, let us compute WT from (9):

0.0309 0.3737 0.3954
∣∣ 0.1539 0.0461

0.0586 0.2200 0.4214
∣∣ 0.0724 0.2276

0.1883 0.3193 0.2924
∣∣ 0.0588 0.1412


0.8 0.2

0.7 0.3

0.8 0.2

(34)

Then, by (12), we compute the limiting beliefs at θ◦1 and θ◦2 , by
summing the elements of the corresponding blocks and we obtain
the desired beliefs as in (31).
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