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ABSTRACT
This paper examines metric spaces in which the distance between any
pair of nodes is given by an interval. The goal is to investigate methods
for hierarchical clustering, i.e., a family of nested partitions indexed by a
connectivity parameter, deduced from the underlying distance intervals
of the metric spaces. Our construction is based on designing admissible
methods abiding to the axioms of value and transformation. Two admis-
sible methods are constructed and are shown to provide upper and lower
bounds in the space of all admissible methods. Practical implications are
explored by clustering moving points via snapshots. The proposed clus-
tering methods succeed in identifying underlying clustering structures
via the maximum and minimum distances in all snapshots.

Index Terms— Clustering, hierarchical clustering, axiomatic clus-
tering, network theory, network science, metric spaces.

1. INTRODUCTION

We often encounter datasets representing points in a metric space but in
which the computation of exact distances between points is intractable.
When this happens it is customary to resort to tractable lower and upper
bounds. This is the case when, e.g., the points themselves represent indi-
vidual unlabeled networks. The space of networks can be endowed with
a metric that is computationally intractable because unlabeled networks
are invariant to permutations [2, 3]. However, upper bounds are readily
available by looking at specific permutations and lower bounds can be
computed using homological features [4, 5]. In this paper we study hi-
erarchical clustering methods for problems of this form. I.e., we want
to hierarchically cluster points in a metric space in which the distances
between pairs of points are only known to belong to some interval.

The approach we take is axiomatic in nature and builds on the in-
creasingly strong theoretical understanding of clustering methods [6–
13]. Our particular interest here is in hierarchical clustering where in-
stead of a single partition, we search for a family of partitions indexed
by a connectivity parameter, e.g., [14–16]. It has been proved in [11] that
single linkage [15, Ch. 4] is the unique hierarchical clustering method
that abides to three reasonable axioms. These results were later extended
to asymmetric networks not necessarily metric and the number of of ax-
ioms required for unicity results reduced to only two [11,13]. In the case
of metric spaces the two properties that are imposed as axioms in [13]
can be intuitively stated as: (A1) The nodes in a network with two nodes
are clustered at the resolution specified by their distance. (A2) A network
that is uniformly dominated by another should have clusters that are also
uniformly dominated. Property (A1) is dubbed the Axiom of Value and
property (A2) the Axiom of Transformation. The goal of this paper is to
extend the axiomatic construction of hierarchical clustering in [11, 13]
for clustering based on distance intervals. Clustering methods that at-
tempt to take uncertainty into consideration include the construction of
models to replicate the properties of uncertainties in the data [17–19]
as well as the consideration of multiple observations of points given in
a Euclidean space [20–23]. Our work differs in that we investigate sit-
uations where the only available information are the upper and lower
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Fig. 1. An example of metric space where distances between pairs of
nodes are given in lower and upper bounds.

bounds of the actual metric distances. This can be considered as a more
crude observation and a generalization of the approaches in [17–23].

This paper aims to continue the axiomatic hierarchical clustering
previously explored in [11, 13] for clustering of metric spaces in which
distances are given by intervals, and to impose desired properties that
one expects for rational methods. With these properties, we proceed
to characterize the space of methods that are admissible with respect to
them and apply the methods to cluster moving points via their snapshots.

2. PRELIMINARIES

We consider a metric spaceMX to be a pair (X, dX) whereX is a finite
set of nodes and dX : X × X → R+ is a metric distance. In spe-
cific, dX(x, x′) between nodes x and x′ is assumed to be nonnegative,
is symmetric such that dX(x, x′) = dX(x′, x), and is 0 if and only if the
nodes coincide with x = x′; dX also satisfies triangle inequality with
dX(x, x′′) ≤ dX(x, x′) + dX(x′, x′′) for any triplets x, x′, x′′ ∈ X .
The interest of study in this paper is not on the metric space MX , but
in situations where observation of dX(x, x′) is only given in an inter-
val. Formally, we consider IX as the triplet (X, d̄X , dX) where given a
pair of nodes x, x′ ∈ X , we have the relationship 0 < dX(x, x′) ≤
dX(x, x′) ≤ d̄X(x, x′). The bounds d(x, x′) and d̄(x, x′) between
nodes x, x′ ∈ X are nonnegative for all pairs and 0 if and only if x = x′;
moreover, they are symmetric, i.e. d(x, x′) = d(x′, x) and similarly for
d̄(x, x′). However, they may not necessarily satisfy the triangle inequal-
ity. We define I as the set of all metric spaces where the actual distance
is observed in a confidence interval. Entities in I may have different
node sets X as well as different distance lower or upper bounds.

An example metric space with distance given by intervals is shown
in Fig. 1. The smallest nontrivial case with nodes p and q and distance
bounds d(p, q) = d and d̄(p, q) = d̄ ≥ d > 0 is described in Fig. 2. We
define the two-node space ∆2(d, d̄) with bounds d and d̄ as

∆2(d, d̄) := ({p, q}, d, d̄). (1)

A clustering of the setX denotes a partition PX ofX — a collection
of sets PX = {S1, . . . , SJ} with Si ∩ Sj = ∅ for any i 6= j covering
X , ∪Jj=1Sj = X . The sets S1, . . . , SJ are named the clusters of PX .
An equivalence relation ∼ on X is a binary relation such that for all
x, x′, x′′ ∈ X we have that (1) x ∼ x, (2) x ∼ x′ if and only if x′ ∼ x,
and (3) x ∼ x′ and x′ ∼ x′′ would imply x ∼ x′′. A partition PX =
{S1, . . . , SJ} of X always induces and is induced by an equivalence
relation ∼PX on X where for all x, x′ ∈ X we have that x ∼PX x′ if
and only if x and x′ is cluttered to the same set Sj for some j.
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Fig. 2. Two-node space ∆2(d̄, d) and the Axiom of Value: nodes are
clustered at the combination of the distance bounds.
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Fig. 3. Axiom of Transformation. If IX can be mapped to IY using a
α-distance-reducing map φ, then for every δ nodes clustered together in
DX(δ) must also be clustered in DY (δ).

In this paper we focus on hierarchical clustering methods [11, 13].
The output of hierarchical clustering methods is not a single partition
PX but a nested collectionDX of partitionsDX(δ) ofX indexed by the
resolution parameter δ ≥ 0. In the language of equivalence relation, for
a givenDX , we say that two nodes x and x′ are equivalent at resolution δ
with notation x ∼DX (δ) x

′ if and only if nodes x and x′ are in the same
cluster of DX(δ). The nested collection DX is named a dendrogram.

Dendrograms are difficult to analyze. A more convenient representa-
tion is acquired when dendrograms are identified with finite ultrametric
spaces. An ultrametric on the space X is a metric uX : X × X →
R+ satisfying the stronger triangle inequality such that for any points
x, x′, x′′ ∈ X , uX(x, x′′), uX(x, x′), and uX(x′, x′′) abide to

uX(x, x′′) ≤ max
(
uX(x, x′), uX(x′, x′′)

)
. (2)

We investigate ultrametrics because it preserves the structure of den-
drograms [11]. Given a dendrogram, its corresponding ultrametric
is uX(x, x′) := min

{
δ > 0 : x ∼DX (δ) x

′}; given an ultrametric,
its associated equivalence relationship ∼uX (δ) is x ∼uX (δ) x′ ⇔
uX(x, x′) ≤ δ. From this equivalence, we consider hierarchical cluster-
ing methodH as a mapH : I → U to the space of ultrametrics.

The notions of chain and chain costs are substantial in the develop-
ment. Given a metric space with distance intervals (X, dX , d̄X) and a
pair x, x′ ∈ X , a chain from x to x′ is an ordered sequence of nodes
in X , i.e. [x = x0, x1, . . . , xl−1, xl = x′], which begins with x and
ends at x′. We denote C(x, x′) as one such chain and say C(x, x′)
connects x to x′. Given two chains C(x, x′) and C(x′, x′′) such that
the end point x′ of the first chain is the same as the starting point of
the second, we define the concatenated chain C(x, x′) ] C(x′, x) as
[x = x0, x1, . . . , xl−1, xl = x′ = x′0, x

′
1, . . . , x

′
l′ = x′′]. For C(x, x′),

we define its upper cost and lower cost as

max
i|xi∈C(x,x′)

d̄X(xi, xi+1), max
i|xi∈C(x,x′)

dX(xi, xi+1), (3)

The minimum upper chain cost c̄(x, x′) and the minimum lower chain
cost c(x, x′) between a pair x and x′ is then defined respectively as the
minimum upper and lower cost among all chains connecting x to x′,

c̄X(x, x′) := min
C(x,x′)

max
i|xi∈C(x,x′)

d̄X(xi, xi+1), (4)

cX(x, x′) := min
C(x,x′)

max
i|xi∈C(x,x′)

dX(xi, xi+1). (5)

The minimum upper and lower chain costs are different in general,
however they are equal in the degenerate case where distance bounds
coincide with dX(x, x′) = d̄X(x, x′) := dX(x, x′) for any x, x′ ∈ X .
In this case, the minimum cost c̄X(x, x′) = cX(x, x′) are important in
the construction of the single linkage [11]. In specific, single linkage

ultrametric uSL
X (x, x′) between x and x′ is

uSL
X (x, x′) = min

C(x,x′)
max

i|xi∈C(x,x′)
dX(xi, xi+1). (6)

It can be seen that c̄X is the result of applying single linkage towards the
node set X equipped with dissimilarity d̄X despite the fact that d̄X may
not be a valid metric; similar result holds for cX . In the degenerative case
where distance lower bounds and upper bounds coincide, it is equivalent
to consider metric spaces (X, dX). It has been shown [11] that single
linkage is the unique hierarchical clustering method fulfilling axioms
(A1) and (A2) discussed in Section 3. In the case when the dissimilarity
dX(x, x′) is unknown but given in an interval [dX(x, x′), d̄X(x, x′)]
instead, the space of methods satisfying axioms (A1) and (A2) and their
analogous ones becomes richer, as we explain throughout the paper.

3. AXIOMS OF VALUE AND TRANSFORMATION

To study hierarchical clustering methods on metric spaces where dissim-
ilarities are given in distance intervals, we translate resonable intuitions
into the axioms of value and transformation, described in this section.
We say a hierarchical clustering methodH is admissible if and only if it
satisfies both the the axioms of transformation and value.

The Axiom of Value is achieved by considering the two-node space
∆2(d, d̄). In the degenerate special case where d = d̄ := d(p, q), it
is apparent that the resolution at which nodes p and q are first clustered
together should be d(p, q). In general scenarios where the dissimilarity
d(p, q) is given in an interval [d, d̄] with d < d̄, we say that nodes p
and q form a single cluster first at resolution δ := αd̄ + (1 − α)d, the
convex combination of the upper and lower bounds d̄ and d. Property of
hierarchical clustering then indicates nodes p and q are clustered together
at any resolution δ ≥ αd̄+(1−α)d. The parameter α controls the level
of confidence in examining the distance intervals. A higher value of α
implies a more conservative consideration, where in the extreme case
with α = 1, nodes p and q are clustered together at the distance upper
bound d̄. We formalize this intuition as next.

(A1) Axiom of Value. Given 0 ≤ α ≤ 1, the ultrametric output
({p, q}, up,q) = H(∆2(d, d̄)) resulted from applying H upon the
two-node space ∆2(d, d̄) satisfies that up,q(p, q) = αd̄+ (1− α)d.

The second requirement on the space of desired methods H for-
malizes the intuition for the behavior of H when considering a trans-
formation on the distance bounds on the underlying space X; see Fig.
3. Consider IX = (X, dX , d̄X) and IY = (Y, dY , d̄Y ) and denote
DX = H(X, dX , d̄X) and DY = H(Y, dY , d̄Y ) as the correspond-
ing dendrogram outputs. If we can map all the nodes of the triplet
(X, dX , d̄X) into nodes of (Y, dY , d̄Y ) such that the combination of
lower and upper bounds for any pair of nodes is not increased, we expect
the latter metric distance intervals to be more clustered than the former
one at any given resolution. Intuitively, nodes in IY are less dissimilar
with respect to each other, and therefore at any resolution δ in the respec-
tive dendrograms, we expect that for nodes that are clustered in IX , their
corresponding nodes in Y are also clustered in IY . To formalize this in-
tuition, we introduce the following notion that given IX = (X, dX , d̄X),
IY = (Y, dY , d̄Y ), and a value 0 ≤ α ≤ 1, the map φ : X → Y is
called α-distance-reducing if for any x, x′ ∈ X , it holds that

d̂X(x, x′) ≥ d̂Y (φ(x), φ(x′)), ĉX(x, x′) ≥ ĉY (φ(x), φ(x′)), (7)

where we define d̂X(x, x′) := αd̄X(x, x′) + (1 − α)dX(x, x′) and
similarly ĉX(x, x′) := αc̄X(x, x′)+(1−α)cX(x, x′). A mapping is α-
distance-reducing if both the combinations of distance bounds and chain
costs are non-increasing. In the degenerate case where distance lower
and upper bounds coincide, uSL

X (x, x′) := c̄X(x, x′) = cX(x, x′) is
the output of applying single linkage upon the metric space. There-
fore the first inequality in (7) becomes identical as dX(x, x′) ≥
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Fig. 4. Combine-and-cluster clustering. Nodes x and x′ are clustered together at resolution δ if there exists a chain such that the maximum convex
combination of distance bounds d̂X(xi, xi+1) is no greater than δ [cf. (9)].
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Fig. 5. Cluster-and-combine clustering. Nodes x and x′ are clustered together at resolution δ if there exists a chain such that the maximum convex
combination ĉX(x, x′) of minimum upper and lower chain costs is no greater than δ [cf. (10)].

dY (φ(x), φ(x′)), from which cX(x, x′) ≥ cY (φ(x), φ(x′)) follows
directly. In general cases, ĉX(x, x′) ≥ ĉY (φ(x), φ(x′)) does not follow
from d̂X(x, x′) ≥ d̂Y (φ(x), φ(x′)). The Axiom of Transformation is a
formal statement of the intinction.

(A2) Axiom of Transformation. Consider IX = (X, dX , d̄X) and IY =
(Y, dY , d̄Y ) and a given α-distance-reducing map φ : X → Y . For any
pair of nodes x, x′ ∈ X , the output ultrametrics uX = H(X, dX , d̄X)
and uY = H(Y, dY , d̄Y ) satisfy uX(x, x′) ≥ uY (φ(x), φ(x′)).

In summary, Axiom (A1) specifies our tendency in believing lower
or upper bounds. Axiom (A2) states that if we reduce both the distance
bounds, clusters may be combined but cannot be separated. These ax-
ioms are an adaption of the axioms proposed in [11] for the degenerate
case of dX = d̄X , and the axioms in [13] for asymmetric networks.

In the degenerate case where distance lower and upper bounds co-
incide, another intuitive idea in clustering is that no clusters should be
formed at resolutions smaller than the smallest dissimilarity in the metric
space. To generalize this idea to scenarios where the bounds differ, we
define α-separation sαX(x, x′) between two different nodes x, x′ ∈ X in
a metric space with distances given by intervals (X, dX , d̄X) as

sαX(x, x′) = αc̄X(x, x′) + (1− α)cX(x, x′). (8)

Theα-separation for (X, dX , d̄X) is then defined as sepα(X, dX , d̄X) :=
minx 6=x′ s

α
X(x, x′). In the degenerate case we would have sepα(X, dX , d̄X)

= sep(X, dX) for any α. Following the notion of separation, for resolu-
tions 0 ≤ δ < sepα(X, dX , d̄X), no nodes should be clustered together.
This implies that we must have uX(x, x′) ≥ sepα(X, dX , d̄X) for any
pair of different nodes x 6= x′ ∈ X as we state next.

(P1) Property of Minimum Separation. For (X, dX , d̄X), the output
ultrametric (X,uX) = H(X, dX , d̄X) of the hierarchical clustering
method H needs to satisfy that the ultrametric uX(x, x′) between any
pair x and x′ cannot be smaller than the α-separation sepα(X, dX , d̄X).

Notice that if we apply (P1) onto the two-node space ∆2(d, d̄), we
must have up,q(p, q) ≥ αd̄+ (1−α)d, which means that (P1) and (A1)
are compatible. We can therefore construct two axiomatic formulations
where admissible methods are required to satisfy the (A2) as well as
(P1), or (A2) as well as (A1). As we demonstrate as next that (P1) is im-
plied by (A2) and (A1). Therefore, the two formulations are equivalent.

Theorem 1 If a hierarchical clustering method satisfies the Axiom of
Value (A1) and Axiom of Transformation (A2), it satisfies the Property of
Minimum Separation (P1).

Proof: We refer readers to [24] for details of proofs in the paper. �

4. ADMISSIBLE ULTRAMETRICS

Consider a specific metric space with distances given by intervals IX =
(X, dX , d̄X) ∈ I. Given a value 0 ≤ α ≤ 1, one particular clus-
tering method satisfying axioms (A1) and (A2) can be established by

examining the α-combined dissimilarity d̂X(x, x′) for all pair of nodes
x, x′ ∈ X . Though d̂X does not necessarily satisfy the triangle in-
equality as the original metric distance dX , it is symmetric; therefore the
α-combined dissimilarity effectively reduces the problem to clustering
of symmetric data, a case where the single linkage method defined in (6)
is shown to abide to axioms analogous to (A1) and (A2) [11]. Based on
this observation, we define the combine-and-cluster method HCO with
output (X,uCO

X ) = HCO(X,AX) between a pair x and x′ as

uCO
X (x, x′) := min

C(x,x′)
max

i|xi∈C(x,x′)
d̂X(xi, xi+1). (9)

An illustration of the combine-and-cluster clustering method is shown in
Fig. 4. For a given pair x and x′, we look for chainsC(x, x′) connecting
them. For the chain we examine each of its link, connecting say xi with
xi+1, and investigate the convex combination of the distance bounds, i.e.
d̂X(xi, xi+1) = αd̄X(xi, xi+1)+(1−α)dX(xi, xi+1). The maximum
value across all links in this chain is then recorded. The combine-and-
cluster ultrametric uCO

X (x, x′) between points x and x′ is the minimum
of this value across all possible chains connecting x and x′.

In combine-and-cluster clustering, nodes x and x′ belong to the
same cluster at resolution δ whenever we can find a single chain such
that the maximum convex combination of distance bounds is no greater
than δ. In cluster-and-combine clustering, we switch the order of op-
erations and investigate chains, potentially different, connecting x and
x′, with one chain focusing on the distance upper bounds and the other
chain examining the distance lower bounds, before combining the upper
and lower estimations. To state this definition regarding ultrametrics,
consider IX = (X, dX , d̄X) and 0 ≤ α ≤ 1. We define the cluster-and-
combine methodHCL with output (X,uCL

X ) = HCL(X, dX , d̄X) as

uCL
X (x, x′) := min

C(x,x′)
max

i|xi∈C(x,x′)
ĉX(xi, xi+1)), (10)

An illustration of the cluster-and-combine clustering method is de-
scribed in Fig. 5. For any pair of nodes, we consider the convex
combination ĉX(x, x′) of minimum chain costs. The output of the
cluster-and-combine clustering method is the result by applying single
linkageHSL [cf. (6)] onto the convex combination ĉX(x, x′). The single
linkage is applied towards ĉX(x, x′) because convex combination of ul-
trametrics is a metric but not necessarily an ultrametric. We demonstrate
that the output uCO

X and uCL
X are valid ultrametrics and the methods HCL

andHCO abide to axioms (A1) and (A2).

Proposition 1 The combine-and-cluster method HCO and cluster-and-
combine methodHCL is valid and admissible: uCO

X defined by (9) and uCL
X

defined by (10) are ultrametrics for all IX = (X, dX , d̄X); moreover,
the methodsHCO andHCL satisfy axioms (A1) and (A2).

Given that we have constructed two admissible methods satisfying
axioms (A1)-(A2), it is natural to ask whether these two constructions
are special with respect to other satisfying methods. We prove the im-
portant characterization that any methodH satisfying axioms (A1)-(A2)
yields ultrametrics that lie between uCL

X and uCO
X .
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Fig. 6. (a) Initial position of points, which correspond to two half moons. (b) Relationship between the average difference uCO
X (x, x′)−uCL

X (x, x′) of
the two extremal clustering methods across all pairs of nodes x 6= x′ ∈ X and the intensity of movement σ2. The difference in uCO
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increases but is significantly smaller comparing to d̄X(x, x′)− dX(x, x′). (c) Relationship between the difference uCO
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different pairs of points and the confidence level α. Resulting dendrograms of (d) cluster-and-combine method and (e) combine-and-cluster method.
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Theorem 2 Consider an admissible method H satisfying (A1)-(A2).
Given IX = (X, d̄X , dX) and 0 ≤ α ≤ 1, denote (X,uX) = H(IX)
the output of applyingH onto IX . Then for any pair of nodes x, x′ ∈ X ,

uCL
X (x, x′) ≤ uX(x, x′) ≤ uCO

X (x, x′). (11)

5. CLUSTERING OF MOVING POINTS BY SNAPSHOTS

We consider the clustering of n moving points in a two-dimensional
plane with the initial coordinate of the i-th point represented by p0

i ∈
R2. Points are moving in the plane and we have T snapshots with
pti ∈ R2 denoting the coordinate of the i-th point at the t-th snapshot.
We assume that the movements are completely random and therefore
model the observation as pti := pt−1

i + ε for any i and any time point
1 ≤ t ≤ T , where ε ∈ R2 is a two-dimensional independent zero-
mean Gaussian random variable with covariance matrix σ2I. Having
no knowledge about the starting coordinates, we would like to evalu-
ate clustering based on observations {pti}i=1,...,n,t=1,...,T . To do so,
we consider the node set X where xi ∈ X denotes the i-th point pi,
and use dtX(xi, xj) = ‖pti − ptj‖2 to represent the distance between
the i-th and the j-th points at the t-th snapshot. Then we define metric
space with distances given by intervals (X, dX , d̄X) such that given a
pair of nodes xi 6= xj , we set the distance lower bound dX(xi, xj) =
min1≤t≤T d

t
X(xi, xj) as the minimum distance between the pair at all

snapshots. Similarly, we define d̄X(xi, xj) = max1≤t≤T d
t
X(xi, xj).

Clustering methods are applied upon (X, dX , d̄X).
As an example, we consider n = 30 points whose initial coordi-

nates form two half moons (Fig. 6 (a)), and investigate T = 10 snap-
shots of these moving points. We apply cluster-and-combine clustering
HCL and combine-and-cluster clustering HCO onto the distance bounds
(X, dX , d̄X). The average difference between the output ultrametrics
uCO
X (x, x′) − uCL

X (x, x′) across all pairs of nodes x 6= x′ ∈ X with
respect to the intensity of movement, i.e. the variance σ2 of ε, is dis-
played in Fig. 6 (b) at three different α. The average difference gen-

erally increases with the intensity, however, does not increase signifi-
cantly. As a comparison, the average difference between the distance
bounds d̄X(x, x′)−dX(x, x′) is 0.6353; even at relatively intense move-
ment with σ2 ≥ 1.2, the average difference between the ultrametrics
uCO
X (x, x′) − uCL

X (x, x′) is less than 20% of the difference between the
input distance bounds d̄X(x, x′)− dX(x, x′). The relationship between
the difference uCO

X (x, x′) − uCL
X (x, x′) at three different pairs and α is

plotted in Fig. 6 (c) where σ2 is set to 0.9. The difference uCO
X (x, x′)−

uCL
X (x, x′) is not very high. Combining this with Theorem 2, the outputs

of all admissible hierarchical clustering methods do not differ by much.
Finally, Fig. 6 (d) and (e) show the output dendrograms of cluster-

and-combine and combine-and-cluster methods, respectively. The vari-
ance parameter σ2 of movement ε is set as 0.4 and the confidence level α
as 0.5. Nodes 1 to 15 correspond to points in the upper moon regarding
their initial coordinates; nodes 16 to 30 correspond to points in the lower
moon. It can be seen from Fig. 6 (d) and (e) that (i) both HCL and HCO

yield the desired output (two clusters correspond to two half moons),
with only one point (15) gets misclassified, (ii) limited difference exists
between the two dendrograms, and (iii) points closer in their initial posi-
tions (e.g. points 1 to 9, 10 to 14, 15 to 23, and 24 to 30) tend to be clus-
tered together at low resolutions. As a benchmark, we consider the mean
distance between any pair of nodes d̃X(x, x′) = 1

T

∑T
t=1 d

t
X(x, x′) and

apply single linkage upon (X, d̃X). Fig. 6 (f) shows the resulting den-
drogram, which fails to identify the clusters correctly.

6. CONCLUSIONS

We developed a theory for hierarchically clustering metric spaces with
distances given by intervals. We begin by identifying reasonable axioms.
Two admissible methods were constructed and were proved as upper and
lower bounds for all admissible methods. We explored the practical use-
fulness by clustering moving points via snapshots. The proposed meth-
ods succeeded in identifying the underlying clustering structures.
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