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Abstract—In this paper we consider distributed estimation of
an unknown Gaussian random variable with known mean and
variance, where each sensor observation is affected by both
multiplicative and additive Gaussian observation noises. We
derive the corresponding Cramer Rao Lower Bound (CRLB)
for both quantized and full precision observations. In sequel
we provide some closed-form approximations for both CRLB
expressions which provide us with better understanding of
behavior of CRLBs. Afterwards through analytic and simulation
results we report some scenarios that multiplicative observation
noise can play an enhancive role in terms of estimation accuracy.
We call this phenomena enhancement mode of multiplicative
noise.

I. INTRODUCTION

The problem of distributed parameter estimation has been
studied in numerous literature. Most of the literature have
assumed that the observation model is completely specified
and the only statistical uncertainty is due to the additive
noise [1]–[15]. On the other hand some literature considered
the problem where some type of uncertainty is involved in
observation gains in addition to the presence of additive
noise [16]–[24] 1. For example [18] proposed approximate
Maximum Likelihood (ML) estimators for localizing a source
by means of a sensor array when the received signal is
corrupted by multiplicative noise. The authors in [19], [20]
studied the MinMax estimation of a deterministic unknown
parameter where the model matrix is not exactly known, and
the uncertainty is modeled as an additive noise and a bounded
perturbation in model matrix. In [21]–[23] the authors studied
the MinMax and ML estimation of a deterministic unknown
vector, where the elements of the model matrix are modeled
as random variables with known second order statistics.
The authors in [23] derived the Cramer Rao Lower Bound
(CRLB) and demonstrated that for some specific values of de-
terministic unknown vector, randomness in the model matrix
improves the performance in terms of Mean Square Error
(MSE). In [24] ML estimator of a deterministic unknown
parameter, based on sign measurements of observations are
derived where both multiplicative and additive noises were in-
volved. The authors also showed that the multiplicative noise
exacerbates the performance of the ML estimator in most
cases. However, provided that the additive noise variance is
small in comparison with the energy of unknown parameter,
suitable values of multiplicative noise may improve the MSE
performance. Similar results have been reported in [16].

In this paper we consider the distributed estimation of
an unknown Gaussian random variable. We assume sensors’
observations are affected by both multiplicative and additive

1This type of uncertainty may be referred as model uncertainties, sens-
ing matrix perturbations or multiplicative noise environments in different
literatures.

Gaussian observation noises. We derive the corresponding
Bayesian CRLB [8] for two cases i) Fusion Center (FC)
has the access to full precision observations, ii) the FC has
access to quantized version of observations only. We also
provide some closed-form approximations for both CRLB ex-
pressions which allow us to obtain a better understanding of
the behavior of the CRLB expressions with respect to (w.r.t.)
variations in different system parameters. Afterwards through
analytic and simulation results we identify the conditions
under which multiplicative observation noise can enhance the
estimation accuracy. We call this phenomena as enhancement
mode [25] [26] of multiplicative noise. Technically speaking
we contend that there exists an enhancement mode for
multiplicative noise provided that quantizers are fine enough
and/or additive observation noise is strong enough.
Interestingly the results in this paper for Bayesian CRLB are
different from those reported in [24] [16] [23], for classical
CRLB (where the unknown parameter is deterministic). For
instance according to our results there is no enhancement
mode for binary quantizers, whereas [24] and [16] reported
some scenarios where multiplicative observation noise may
improve the performance. The authors in [24] and [16] also
showed that the enhancement mode occurs when the variance
of additive observation noise is small in comparison with
the energy of unknown parameter. In contrast, for Bayesian
CRLB, the enhancement mode is more likely to happen for
larger additive noise variances. Also note that because of
the deterministic nature of unknown parameter in [24] [16]
[23] the improvement due to model randomness depends on
specific values of unknown, which makes it elusive to exploit
the enhancement mode.

II. SYSTEM MODEL
We consider a network of K spatially distributed sensors

and a FC, where the network is tasked with estimating a
realization of an unknown zero mean Gaussian signal source
θ, with known variance, i.e., θ ∼ N (0, σ2

θ). Each sensor
makes a noisy observation of θ, where both additive and
multiplicative observation noises are involved. In particular,
we model the observation xk at sensor k as:

xk = hkθ + nk, for k = 1, ...,K, (1)

where nk’s are additive noises that are uncorrelated with each
other and θ. We assume nk∼N (0, σ2

nk
). The multiplicative

noises hk’s (unknown observation gains), are modeled as
Gaussian random variables with known means and vari-
ances2, i.e hk ∼ N (1, σ2

hk
) that are uncorrelated with each

2Suppose E{hk}=µk . Via scaling each xk with 1/µk , the signal model
in (1) transforms to x′k = h′kθ + n′

k , where x′k = xk/µk , h′k = hk/µk ,
n′
k = nk/µk , such that E{h′k} = 1, var(h′k) = σ2

hk
/µ2k and n′

k ∼
N (0, σ2

nk
/µ2k). Thus, without loss of generality, we assume E{hk} = 1.
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other, θ, and additive noises nk’s. Each sensor transmits
its quantized observation over an error-free communication
channel to the FC, where collective received data are fused
to estimate θ. Error-free communication channel model has
been adopted before in [2], [3], [5], [8], [16] in the con-
text of distributed estimation. Sensor k employs a quan-
tizer with Mk quantization levels, quantization boundaries
ζk,i, i ∈ {1, ...Mk + 1} and quantization levels mk,i =
(ζk,i + ζk,i+1)/2, i ∈ {1, ...Mk}, in order to map xk into a
quantization level mk ∈ {mk,1, ...,mk,Mk

}. The quantization
level mk can be mapped into a binary sequence of length
rk = log2Mk (bits). We refer to rk as quantization rate of
sensor k.

III. BAYESIAN CRAMER RAO LOWER BOUND

In this section we derive the Bayesian CRLB for any unbi-
ased estimator of random variable θ based on quantized and
full precision observations. We also provide some insightful
approximations for the both CRLB expressions, that enable
us to find a better understanding of the CRLB behavior
w.r.t. the variations of noise variances and to study the
enhancement mode of the multiplicative observation noise.

A. Bayesian CRLB derivation
Let m = [m1, ...,mK ]T denote the vector of quantized

observations of all sensors. One can verify that the log-
likelihood function of quantized observations satisfies the
regularity condition, i.e E{∂lnp(m,θ)

∂θ } = 0. Let F q denote
the Fisher information based on all quantized observations
m. It is well known that the MSE of any unbiased estimator
of θ based on m is at least as large as the inverse of F q (i.e.,
the CRLB based on m). We can write F q as:

F q = −E{∂
2lnp(m, θ)

∂2θ
}

= −E{∂
2lnp(m|θ)
∂2θ

} − Eθ{
∂2lnp(θ)
∂2θ

} (2)

where Eθ is expectation operator w.r.t. distribution of θ. First,
we consider the second term in (2). For θ ∼ N (0, σ2

θ) it is
easy to verify that Eθ{∂

2lnp(θ)
∂2θ } = − 1

σ2
θ

. We continue with
characterizing the first term in (2). Note that hk’s and nk’s are
all uncorrelated Gaussian and hence independent. Therefore,
mk’s conditioned on θ are independent and lnp(m|θ) =∑K
k=1 lnp(mk|θ). This allows us to write the first and second

derivatives of the log-likelihood function as the following:

∂lnp(m|θ)
∂θ

=

K∑

k=1

1

p(mk|θ)
∂p(mk|θ)

∂θ
(3)

∂2lnp(m|θ)
∂2θ

=

=Fa︷ ︸︸ ︷
K∑

k=1

1

p(mk|θ)
∂2p(mk|θ)

∂2θ
−

K∑

k=1

1

p2(mk|θ)
(
∂p(mk|θ)

∂θ
)2

︸ ︷︷ ︸
=Fb

(4)

We observe that the first term in (2) is equal to −E{Fa} +
E{Fb}. Next we find E{Fa} and E{Fb}. We have E{Fa} = 0
since:

E{Fa} =

K∑

k=1

E{ 1

p(mk|θ)
∂2p(mk|θ)

∂2θ
} =

K∑

k=1

∫
p(θ)

Mk∑

i=1

p(mk = mk,i|θ)
p(mk = mk,i|θ)

∂2p(mk = mk,i|θ)
∂2θ

dθ =

K∑

k=1

∫
p(θ)




∂2(

=1︷ ︸︸ ︷
Mk∑

i=1

p(mk = mk,i|θ))

∂2θ




dθ = 0

For E{Fb} we have:

E{Fb} =

K∑

k=1

E{ 1

p2(mk|θ)
(
∂p(mk|θ)

∂θ
)2} = (5)

K∑

k=1

∫
p(θ)

Mk∑

i=1

1

p(mk = mk,i|θ)
(
∂p(mk = mk,i|θ)

∂θ
)2dθ

To obtain E{Fb} in (5) we need to characterize p(mk =
mk,i|θ) and its derivative with respect to θ. One can show
that:

Sk,i(θ) , p(mk = mk,i|θ) =

Pr{ζk,i ≤ hkθ + nk ≤ ζk,i+1|θ} =

Φ(
ζk,i+1 − θ√
θ2σ2

hk
+ σ2

nk

)− Φ(
ζk,i − θ√
θ2σ2

hk
+ σ2

nk

) (6)

Hk,i(θ) ,
∂Sk,i(θ)

∂θ
(7)

where Φ(.) is a standard normal CDF. Let Hk,i(θ) ,
∂Sk,i(θ)
∂θ .

Deriving Hk,i(θ) is straightforward and would be subtraction
of two scaled standard normal PDFs. Substituting the expres-
sions in (6) and Hk,i(θ) in (4) and (2), F q in (2) becomes:

F q =

K∑

k=1

Mk∑

i=1

Eθ{
H2
k,i(θ)

Sk,i(θ)
}+

1

σ2
θ

(8)

Although the integral corresponding to the expectation in (8)
does not render to a closed form, since Sk,i(θ) > 0, ∀θ it
can easily be calculated with numerical methods. Without
loss of generality, in sequel of paper, we assume all sensors
have the same observation noise variances, i.e σ2

hk
= σ2

h,
σ2
nk

= σ2
n, ∀k, and same quantization rates, i.e rk =

r = log2(M),∀k, and the same quantization boundaries
ζ1, ..., ζM+1. Thus index k for Sk,i(θ) and Hk,i(θ), can be
dropped and F q in (8) reduces to:

F q = K

M∑

i=1

Eθ{
H2
i (θ)

Si(θ)
}+

1

σ2
θ

(9)
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Fig. 1: CRLBq and C̃RLBq vs σ2
n for different values of r and σ2

h.

B. Approximation of Bayesian CRLB and noise enhancement
We start with F q in (9). Although the integral correspond-

ing to expectation in (9) cannot be reduced to a closed form,
for the case of σ2

h � σ2
n and large r, we can employ the

second order Taylor approximations for Si(θ) and Hi(θ), and
after taking some tedious integral calculus steps, we reach the
following approximate expression for F q:

F̃ q = K

M∑
i=1

(ζi+1 − ζi)(σ
4
θ + σ2

nσ
2
θ + σ2

nζ
2
i )

σ2
n(σ

2
θ + σ2

n)5/2
φ(

ζi√
σ2
θ + σ2

n

)

+
1

σ2
θ

(10)

where φ(.) is a standard normal PDF.
Let x = [x1, ..., xK ]T denote the vector of full precision

observations of all sensors. For the clairvoyant case where
the FC has access to (unquantized) full precision observations
xk’s, one can verify that the log-likelihood function satisfies
the regularity condition, i.e E{∂lnp(x,θ)

∂θ } = 0, and the Fisher
information can be presented as following (we omitted the
details due to space limitations):

F cv = KEθ{
σ2
n + θ2σ2

h + 2θ2σ4
h

(σ2
n + θ2σ2

h)2
}+

1

σ2
θ

(11)

It is easy to verify that ∂F cv

∂σ2
n

< 0, i.e. F cv is decreas-
ing in σ2

n, which is intuitive. On the other hand F cv is
not a monotonic function of σ2

h which is unintuitive. In
order to investigate the behavior of F cv w.r.t. σ2

h, let’s
have a closer look at (11). The integral corresponding to
the expectation in (11) can not be expressed in a closed
form, however it can be accurately approximated using
Taylor expansion of ratio function. Expressing the Fisher
information in (11) as F cv = KEθ{f(z)} + 1

σ2
θ

, where

f(z) =
(1+2σ2

h)z−2σ
2
nσ

2
h

z2 and expanding the Taylor series
of f(z) around z0 = µ , E{z} = σ2

n + σ2
θσ

2
h, gives

us f(z) ≈ f(µ) + f ′(µ)(z−µ)
2 + f ′′(µ)(z−µ)2

6 , where the
remaining terms are discarded. Substituting the expressions
for first f ′(z) and second f ′′(z) order derivatives and taking
the expectations lead us to Eθ{f(z)} ≈ (1+2σ2

h)µ−2σ
2
nσ

2
h

µ2 +

(
(1+2σ2

h)µ−6σ
2
nσ

2
h

µ4 )Var(z) (note that the expansion is valid for
z 6= 0 which is the case here). Adopting the first term of
Taylor expansion as an approximate of F cv , we have:

F cv ≈ F̃ cv = K(
σ2
n + σ2

hσ
2
θ + 2σ4

hσ
2
θ

(σ2
n + σ2

hσ
2
θ)2

) +
1

σ2
θ

(12)

Simulation results verify that second order Taylor expansion
is a good approximation. Taking the derivative of (12) w.r.t.
σ2
h (assuming 4σ2

n ≥ σ2
θ ) we find that F̃ cv is decreasing in

σ2
h for σ2

h < δ̃cv , 1
4−(σ2

θ/σ
2
n)
, and increasing in σ2

h when

σ2
h > δ̃cv (worst case performance in terms of estimation

error happens for σ2
h = δ̃cv). In other word provided that

σ2
h > δ̃cv > 0, multiplicative observation noise can enhance

the estimation accuracy3 . Simulation results reveal that F cv

has a similar behavior to F̃ cv w.r.t. σ2
h.

Analyzing the behavior of F q in (9) w.r.t. σ2
h, however,

is challenging and mathematically intractable. Simulation
results show that F q in (9) has different behavior w.r.t. σ2

h for
small r, such that excessive multiplicative observation noise
can not enhance the estimation accuracy. However for large
r the behaviors are the same.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, with numerical examples and simulations,
we corroborate our analytic results. The simulation results
compare the proposed approximations for CRLB expressions
in different scenarios. Numerical examples also verify that
there exist scenarios that multiplicative observation noise can
play an enhancive role improving the estimation accuracy.
Without loss of generality we let K = 20 and σ2

θ = 1. Due to
the Gaussian nature of unknown θ and noises, we assume xk
lies in a bounded interval, i.e., xk ∈ [−τ, τ ] for a reasonably
large value of τ . We employ uniform quantizers in sensors
with step size of ∆ , ζi+1 − ζi = 2τ

M−1 .

Let CRLBq and C̃RLBq denote the inverses of F q in
(9) and F̃ q in (10), respectively. Fig. 1 compares CRLBq

C̃RLBq . As can be seen the approximation is very accurate
for r ≥ 4 and σ2

h � σ2
n. Note that as r increases the

approximation improves so we omitted r’s larger than 4. For
cases of σ2

h = 0.5 and σ2
h = 1 and r ≥ 4, the approximation

still remains quite accurate.
Let CRLBcv and ˜CRLBcv denote the inverse of F cv

in (11) and F̃ cv in (12), respectively. Also let δq =
argmax
σ2
h

(CRLBq) and δcv = argmax
σ2
h

(CRLBcv). Fig. 2. a,b,c

3One may notice a resemblance of the phenomena with Stochastic
Resonance (SR). However the SR happens in nonlinear systems with additive
noise, where the performance is maximized for a particular noise intensity.
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Fig. 2: CRLBq , CRLBcv and ˜CRLBcv vs σ2
h for different values of r and σ2

n.

depict CRLBq , and Fig.2. d depicts CRLBcv and ˜CRLBcv
vs σ2

h. As can be seen in Fig.2. d, provided that σ2
h > δcv ,

CRLBcv decreases as σ2
h increases. In another word the

multiplicative noise can play an enhancive role improving the
estimation accuracy. Note that ˜CRLBcv may be perceived
as a rough approximate of CRLBcv , however δ̃cv is a very
accurate approximate of δcv . As predicted by our analysis,
enhancement mode starts with smaller values of σ2

h as σ2
n

increases. For instance δ̃cv = 0.5, δcv = 0.420 for σ2
n = 0.5

and δ̃cv = 0.267, δcv = .262 for σ2
n = 4. This is also the

case for CRLBq (Fig. 2. b,c), that enhancement mode (if
there is any) starts with smaller values of σ2

h when σ2
n gets

larger. However probing into Fig. 2. a,b reveals that there
may not be any enhancement mode for CRLBq if r or σ2

n

gets small. For instance for cases of r = 1 (Fig. 2. a) and
r = 2, σ2

n = 0.5, 1 (Fig. 2. b) there is no enhancement mode.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we derived the Bayesian CRLB for distributed
estimation of a Gaussian random variable where both multi-
plicative and additive Gaussian noises are involved in obser-
vations, for both full precision and quantized observations.
In sequel we provided some closed-form approximations for

the CRLBs and studied the behavior of these approximations
as quantization rates and variances of multiplicative and
additive observation noises vary. In contrast to the addi-
tive noise which always degrades the estimation accuracy,
our results reveal that in some scenarios the multiplicative
noise can play an enhancive role in terms of estimation
accuracy. We call this phenomena enhancement mode of
multiplicative noise. Simulation results illustrate that there
always exists an enhancement mode for the CRLB based
on full precision observations. On the other hand for the
CRLB based on quantized observations there may not exist an
enhancement mode for small quantization rates, and/or small
additive observation noise variance. In future work we plan to
approach this problem from a system design perspective and
using distributed optimization [27] techniques to optimize
potential Bayesian estimators that can effectively utilize the
enhancement mode of multiplicative observation noise, in
order to improve the estimation accuracy.
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