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ABSTRACT

In the sensor network blind calibration problem, the gains and offsets
of sensors are estimated from noisy observations of unknown under-
lying signals. This is in general a non-identifiable problem, unless
restrictive assumptions on the signal subspace or sensor observations
are imposed. To overcome these assumptions, we propose a dynamic
Bayesian nonparametric model. We show that if the unknown under-
lying signals follow the first-order auto-regressive process, then the
sensor gains and offsets are identifiable. Furthermore, our model al-
lows sensors to form clusters, where each cluster observes the same
underlying signal. The clusters are however not known a priori, and
are learned through the sensor data. We present a block Gibbs sam-
pling inference method based on the forward filtering backward sam-
pling algorithm. Simulation results suggest that our approach can es-
timate the sensor gains and offsets with good accuracy, and performs
better than methods that first perform clustering and then blind cali-
bration.

Index Terms— Blind calibration, dynamic Bayesian nonpara-
metrics, Dirichlet process, block Gibbs sampling

1. INTRODUCTION

Because of differences in the materials and electrical components
that make up a sensor and other environmental factors, each sensor
has a gain and offset that needs to be estimated or calibrated before
its observations can be interpreted meaningfully [1,2]. For example,
in using sensors to perform monitoring of a physical phenomenon,
modeling of the distributions governing the sensor observations is re-
quired in various distributed inference methods [3, 4]. A sensor can
be calibrated in a controlled environment by utilizing its observa-
tions of a known signal to estimate its gain and offset. However, this
is a painstaking task, which may be impractical if the sensor network
is large, and sensors may be placed in inaccessible locations. Macro
calibration has thus been proposed to calibrate an entire sensor net-
work based on observations from all sensors in the network [5, 6].
Furthermore, the calibration is done without knowledge of the un-
derlying signals that the sensors are observing. This is known as
blind calibration [1, 7]. Since without knowing the ground truth sig-
nals, the sensor gains and offsets are non-identifiable if estimation is
to be done solely based on the sensors’ noisy observations. As such,
additional assumptions are required.

In [1], a blind calibration method is proposed based on the as-
sumption that the underlying signals observed by all sensors are de-
terministic and lie in a known subspace, and the time-averaged mea-
surements of every sensor approaches a known mean value. The
paper [8] proposes a distributed blind calibration algorithm and as-
sumes that all the sensors observe the same stochastic underlying

signal. In some applications in which sensors observe multiple sig-
nals, the aforementioned approach cannot be applied if we do not
know a priori which sensor is observing which signal. In [9, 10],
blind calibration methods are based on redundancy information pro-
vided by co-located sensors, which are classified into a group and
assumed to have correlated measurements. Both of these two meth-
ods assume that sensors are densely deployed.

In this paper, we adopt a Bayesian nonparametric approach to
sensor blind calibration. We assume that sensors are monitoring an
unknown number of signals, and the signal observed by each sensor
is unknown. We say that two sensors are in the same cluster if they
observe the same signal, which follows a first-order auto-regressive
(AR) stochastic process. This assumption is reasonable in many ap-
plications, including multi-region temperature monitoring and multi-
object tracking. We show that with this assumption, the sensor gains
and offsets are identifiable. We then propose a dependent dynamic
model inspired by the Dirichlet process for the sensor observations:
At each time t, the sensor observations follow a Bayesian nonpara-
metric model, and the model at time t depends on the model at time
t−1. To the best of our knowledge, the use of a dependent Bayesian
nonparametric model for sensor network blind calibration is novel.
We present block Gibbs sampling inference method, and perform
simulations to compare the performance of our approach with ap-
proaches that first perform clustering and then blind calibration. Un-
like [1, 8–10], we do not require sensors to be densely deployed or
to know the time-averaged measurements of each sensor.

The rest of this paper is organized as follows. In Section 2,
we present our problem formulation and sufficient conditions un-
der which the sensor gains and offsets are identifiable. In Section 3,
we propose a dynamic Bayesian nonparametric model for blind cal-
ibration. In Section 4, we develop inference methods for our model.
Simulation results are presented in Section 5, and we conclude in
Section 6. In the rest of this paper, we useN (µ, σ2) to represent the
Gaussian distribution with mean µ and variance σ2. The notation
y | x denotes a random variable y conditioned on x, and p(y | x)
denotes its conditional probability density function. We use ∼ to
represent equality in distribution. The sequence y(1), y(2), . . . , y(t)
is written as y(1 : t).

2. PROBLEM FORMULATION AND IDENTIFIABILITY

In this section, we present the blind calibration problem, our system
model and assumptions, and show that the sensor gains and offsets
are identifiable under our assumptions.

Consider N sensors monitoring an unknown number of signals
{θk(t) : k ≥ 1} over a period of time t = 1, 2, . . . , T . The signal
observed by each sensor n is also unknown. At each time t, sensor
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n observes

yn(t) = αnθsn(t)(t) + βn + wn(t), (1)

where αn and βn are the gain and offset of sensor n respectively,
sn(t) is the index of the signal sensor n is monitoring, and wn(t)
is an additive observation noise with distribution N (0, ς2n(t)). The
observation noises wn(t) are independent across sensors and time.
Estimating αn and βn without knowing θsn(t)(t) a priori is known
as blind calibration. This is in general a non-identifiable estimation
problem since αnθsn(t) = (cαn)(θsn(t)/c) for any constant c 6= 0.
In the following, we provide a sufficient condition for identifiability
of the sensor gain and offset.

Proposition 1. For each n ≥ 1, suppose that for some t ≥ 1, we
have sn(t′) = sn(t) = k for t < t′ ≤ t + 2 and some k. Suppose
that

θk(t
′) = λkθk(t

′ − 1) + εk(t
′), (2)

where λk 6= 0 and εk(t′) are independent random variables with
zero mean and variance σ2 > 0. Suppose also that (2) holds for
t′ = 1 and some k = sn(1), where θsn(1)(0) has mean msn(1)(0).
Then, the parameters (αn, βn) are identifiable.

Proof. Suppose that (αn, βn) is not identifiable. Let (α′n, β′n) 6=
(αn, βn) be another sensor gain and offset that give rise to the
same joint distribution for the sensor observations yn(t) and signals
θsn(t)(t) for all t. Let (mk(t), vk(t)) and (m′k(t), v

′
k(t)) be the

mean and variance of the linear least squares (LLS) estimator of
θk(t) | yn(1 : t) when the sensor parameters are (αn, βn) and
(α′n, β

′
n), respectively. Then from Chapter 18 of [11], the LLS

predictor of yn(t + 1) | yn(1 : t) when the sensor parameters are
(αn, βn) has variance

α2
nλ

2
kv(t) + α2

nσ
2 + ς2n(t+ 1), (3)

and the variance of the LLS estimator of θk(t+1) | yn(1 : t+1) is

vk(t+ 1) = λ2
kvk(t) + σ2 − α2

n(λ
2
kvk(t) + σ2)2

α2
nλ

2
kvk(t) + α2

nσ2 + ς2n(t+ 1)
.

(4)

Similar expressions hold for (α′n, β′n). From (3), since αn and α′n
induces the same joint distribution and hence the same LLS estima-
tor and predictor, we have

α2
nλ

2
kvk(t) + α2

nσ
2 = α′n

2
λ2
kv
′
k(t) + α′n

2
σ2, (5)

which, together with (4) leads to

α2
nλ

2
kvk(t+ 1)

= λ2
k

(
α2
nλ

2
kvk(t) + α2

nσ
2 − (α2

nλ
2
kvk(t) + α2

nσ
2)2

α2
nλ

2
kvk(t) + α2

nσ2 + ς2n(t+ 1)

)
= α′n

2
λ2
kv
′
k(t+ 1). (6)

Applying (6) to (5) with t replaced by t + 1, we obtain αn = α′n,
a contradiction. Therefore αn is identifiable. If the sensor param-
eters are (αn, βn), the mean of yn(1) is αnλkmsn(1)(0) + βn,
whereas the mean is α′nλkmsn(1)(0) + β′n if the sensor parameters
are (α′n, β

′
n). Since αn = α′n, we obtain βn = β′n.

The proof is complete.
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Fig. 1. Graphical representation of the dynamic Bayesian nonpara-
metric model.

3. DYNAMIC BAYESIAN NONPARAMETRIC MODEL

In this section, we propose a dynamic Bayesian nonparametric
model to couple the sensor signal evolution with its observations.
Fig. 1 shows the graphical representation of our model. Let α =
(αn)

N
n=1, β = (βn)

N
n=1, ς(t) = (ςn(t))

N
n=1, λ = {λk : k ≥ 1},

y(t) = (yn(t))
N
n=1, and θ(t) = (θk(t))

∞
k=1. The priors of αn and

βn are

αn ∼ N
(
µ1,n, σ

2
1,n

)
, βn ∼ N

(
µ2,n, σ

2
2,n

)
(7)

where µ1,n, σ1,n, µ2,n, σ2,n are known hyperparameters. We note
that Gaussian priors for the calibration parameters are widely
adopted in the literature, see [9, 12, 13]. We assume that for each
k ≥ 1, θk(t) follows the first-order AR process given in (2), where
we now also assume that εk(t) ∼ N

(
0, σ2

)
for all t ≥ 1. Let

m(0) and v(0) be the mean and covariance of θ(0), which is also
assumed to be Gaussian distributed. For each node, we assume its
gain, offset and the true signal it observes are mutually independent.

At each time t, sensors observing the same signal θk(t) can be
considered to be clustered into the same group, where sn(t) = k in-
dicates the index of the cluster that sensor n belongs to. Let πn,k(t)
be the probability that sn(t) = k, i.e., sn(t) | π(t) ∼ πn(t),
where πn(t) = {πn,k(t) : k ≥ 1}. Let s(t) = (sn(t))

N
n=1, and

π(t) = {πn(t) : n ∈ {1, ..., N}}. We consider π(t) to be gener-
ated by a DPMM, i.e., πn(t) ∼ GEM(γ), where GEM stands for
the Griffiths, Engen and McCloskey stick breaking process and γ is
a concentration hyperparameter [14]. From [15,16], we approximate
the Dirichlet process with its degree K weak limit given by

πn(t) ∼ Dir(γ/K, ..., γ/K), (8)

where Dir(·) is the Dirichlet distribution. However, in view of
Proposition 1, we need to introduce an amount of “stickiness” to
sn(t) so that nodes do not change clusters frequently. Therefore, we
use the following instead:

πn,k(t) | sn(t− 1), γ, κ ∼ Dir(p1(t), p2(t), ...., pK(t)), (9)

where for each k ∈ {1, 2, ...,K},

pk(t) =

{
γ/K + κ if sn(t− 1) = k,
γ/K otherwise,

where κ is a constant that controls the probability of a node changing
to a different cluster at time t. We choose κ to be sufficiently large
to induce a certain amount of stickiness in the node cluster index.
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In summary, at each time t ≥ 1, our model is the following:

sn(t) | π(t) ∼ πn(t),

πn,k(t) | sn(t− 1), γ, κ ∼ Dir(p1(t), ..., pK(t)),

θk(t) | θk(t− 1), σ, λk ∼ N
(
λkθk(t− 1), σ2),

yn(t)|θ(t), sn(t) = k, αn, βn, ςn(t) ∼ N
(
αnθk(t) + βn, ς

2
n(t)

)
.

4. INFERENCE ALGORITHM

To perform inference using the dynamic Bayesian nonparametric
model presented in Section 3, we use a block Gibbs sampling method
based on the forward filtering backward sampling approach. Our al-
gorithm is detailed in Algorithm 1.

Algorithm 1 Bayesian Inference Algorithm

Input: αi−1, βi−1,θi−1,πi−1, si−1 from previous iteration (itera-
tion i− 1) and data y = (y(t))Tt=1

Output: new set of samples: αi, βi,θi,πi si

for t = 1 to T do
Sample si(t) using (10) and πi(t) using (11).

end for
Block sample θi(1 : T ) using (12).
Sample αi using (16).
Sample βi using (19).
return αi, βi,θi,πi and si

4.1. Sampling πi(t) and si(t)

At the i-th iteration, we sample sn(t) using the following posterior
distribution, where π(t), θ(t), α and β are set to their respective
sample values from the (i− 1)-th iteration:

p (sn(t) = k | yn(t),π(t),θ(t),α,β)
∝ p(sn(t) = k | π(t))p(yn(t) | sn(t) = k,θ(t), αn, βn)

= πn,k(t)p(yn(t) | θk(t), αn, βn) (10)

Let lk(t) ,
∑N

n=1 δ(sn(t)− k), where δ(·) is the Dirac delta func-
tion, be the number of sn(t) sampled from (10) that takes value k.
From (8), and the conjugacy of the Dirichlet prior, we have

πn,k(t) | s(t), sn(t− 1), γ, κ ∼ Dir(p′1(t), p
′
2(t), ...., p

′
K(t)),

(11)

where

p′k(t) =

{
γ/K + lk(t) + κ if sn(t− 1) = k,
γ/K + lk(t) otherwise,

p(yn(t) | sn(t) = k, θk(t), αn, βn, ςn(t)) is from (1). We then
sample πn,k(t) from (11).

4.2. Sampling θi(1 : T )

We set α and β to their respective sample values from the (i −
1)-th iteration. Let yk(t) , {yn(t) | sn(t) = k} and ψ ,
{mk(0), vk(0),α,β, σ, ς, λk}. Then

p(θk(1 : T ) | yk(1 : T ),ψ)

=p(θk(T ) | yk(1 : T ),ψ)

T−1∏
t=1

p(θk(t) | θk(t+ 1),yk(1 : t),ψ),

(12)

where

p(θk(t) | θk(t+ 1),yk(1 : t),ψ)

∝p(θk(t+ 1) | θk(t),ψ)p(θk(t) | yk(1 : t),ψ). (13)

To sample from (12), we need to first obtain p(θk(t) | yk(1 :
t),ψ), where t ∈ {1, 2, ..., T}. With the forward filtering method,
we have

θk(t) | yk(1 : t),ψ ∼ N (mk(t), vk(t)), (14)

where

vk(t) = (αTΣk(t)
−1α+Rk(t)

−1)−1,

mk(t) = vk(t)

(
−αTΣk(t)

−1β +αTΣk(t)
−1yk(t) +

ak(t)

Rk(t)

)
,

Σk(t) = diag({ςn(t) | sn(t) = k}),
ak(t) = λkmk(t− 1), Rk(t) = λ2

kvk(t− 1) + σ2.

Using (14) with t replaced by T, we obtain p(θk(T ) | yk(1 : T ),ψ),
from which we sample θk(T ).

From (13), (14), and the conjugacy of the Gaussian prior, we
have

p(θk(t) | θk(t+ 1),yk(1 : t),ψ) ∼ N (hk(t), Hk(t)), (15)

where

Bk(t) = vk(t)λk/Rk(t+ 1),

Hk(t) = vk(t)−Bk(t)Rk(t+ 1)Bk(t),

hk(t) = mk(t) +Bk(t)(θk(t+ 1)− ak(t+ 1)).

Using (15), we sample θk(t) conditioned on the sample for θk(t+1),
starting from t = T − 1.

4.3. Sampling αi and βi

We set β to their respective sample values from the (i− 1)-th itera-
tion. Let φn(t) , θsn(t)(t), then the posterior distribution of αn is
given by

p(αn | βn,yn(1 : T ),φn(1 : T ), σ1,n, ςn(t))

∝p(yn(1 : T ) | αn, βn,φn(1 : T ), ςn(t))p(αn | σ1,n)

=

T∏
t=1

p(yn(t) | αn, βn, φn(t), ςn(t))p(αn | σ1,n).

From (1) and (7), we obtain the following distribution:

αn | βn,yn(1 : T ),φn(1 : T ), σ1,n, ςn(t) ∼ N (Mn, vn), (16)

where

vn =
1

2

[
T∑

t=1

φn(t)
2

2ς2n(t)
+

1

2σ2
1,n

]−1

, (17)

Mn = vn

[
T∑

t=1

yn(t)φn(t)

ς2n(t)
+
µ1,n

σ2
1,n

−
T∑

t=1

βnφn(t)

ς2n(t)

]
. (18)

Similarly,

βn | αn,yn(1 : T ),φn(1 : T ), σ1,n, ςn(t) ∼ N (Tn, Gn), (19)
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where

Gn =
1

2

[
T∑

t=1

1

2ς2n(t)
+

1

2σ2
2,n

]−1

, (20)

Tn = Gn

[
T∑

t=1

yn(t)

ς2n(t)
+
µ2,n

σ2
2,n

−
T∑

t=1

αnφn(t)

ς2n(t)

]
. (21)

5. SIMULATION RESULTS

We simulate N = 40 sensors observing 4 signals. At initializa-
tion, the signals are chosen to be θ1(0) ∼ N (45, 1), θ2(0) ∼
N (25, 1), θ3(0) ∼ N (10, 1) and θ4(0) ∼ N (−10, 1). The ob-
servation time period is T = 20. We use the following distributions
to generate data:

αi ∼ N
(
1, 0.122

)
, βi ∼ N

(
0, 1.22

)
,

yn(t) = αnθsn(t)(t) + βn + ωn(t),

ωn(t) ∼ N
(
0, ς2n(t)

)
, ς2n(t) ∼ N

(
1, 0.12

)
,

εk(t) ∼ N
(
0, 22

)
, for all k = 1, . . . , 4.

In Algorithm 1,we set the following initial values: K = 10,
{λk}Kk=1=1, {αn = µ1,n, βn = µ2,n}Nn=1, {mk(0)}Kk=1={55, 45,
35, 25, 10, 0, -10, -25, -35, -45}. The estimated sensor gains and
offsets are shown in Fig. 2.

Fig. 2. Estimated sensor gains and offsets.

The average square error (ASE) is defined to be the square de-
viation of an estimated parameter from its true value, averaged over
all the sensors. In our simulation, the ASE of the sensor gain estima-
tion is 0.0019 and the ASE of the sensor offset estimation is 0.3362.
In comparison, the prior variance of the sensor gains and offsets are
0.0144 and 1.44, respectively.

We compare our approach with following methods:
1. The gain and offset of each sensor are estimated according to

its own observations using the maximum a posteriori (MAP)
method.

Fig. 3. Comparison of different methods for sensor gain estimation.

2. We assume that sensor clusters are known a priori, and sen-
sor gains and offsets in the same cluster are estimated using
MAP with all sensor observations from the same cluster. This
represents the best possible performance one can get.

3. Assuming that the number of sensor clusters are known a pri-
ori, we apply k-means to first cluster the sensors based on the
time series of sensor observations, and then MAP to estimate
the sensor gains and offsets in each cluster separately.

4. We use affinity propagation (AP) [17] to perform clustering
and then MAP estimation in each cluster separately.

In Fig. 3, we plot the mean ASE of the estimated sensor gains for the
different methods against the prior variance of the Gaussian distribu-
tion used to generate the sensor gains. Comparing the performance
of methods with and without a priori cluster information, we see that
the correct clustering of the sensors can dramatically improve the es-
timation accuracy. We also observe that our method outperforms the
methods that first perform clustering with k-means or AP and then
conduct blind calibration. This is because both k-means and AP
cluster the observed sensor measurements treating them as a vector,
and do not utilize the evolution information of sensor signal.

6. CONCLUSION

In this paper, we have proposed a dynamic Bayesian nonparametric
model for sensor blind calibration, where each sensor makes noisy
observations of a signal that is evolving according to a first-order
AR process. The number of underlying signals and the signals them-
selves are not known a priori. Our approach does not require several
of the restrictive assumptions used in the literature for blind calibra-
tion. We also do not require a prior knowledge of which sensors
are observing the same signal (sensors observing the same underly-
ing signals are said to be in the same cluster). We have developed
a block Gibbs sampling method to perform inference on our model,
with simulation results suggesting that our performance is better than
methods that first perform clustering with k-means or affinity prop-
agation and then conduct blind calibration.
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